Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 100301    DOI: 10.1088/1674-1056/25/10/100301
GENERAL Prev   Next  

The bound state solution for the Morse potential with a localized mass profile

S Miraboutalebi
Department of Physics, Islamic Azad University, Tehran North Branch, Tehran 1651153311, Iran
Abstract  We investigate an analytical solution for the Schrödinger equation with a position-dependent mass distribution, with the Morse potential via Laplace transformations. We considered a mass function localized around the equilibrium position. The mass distribution depends on the energy spectrum of the state and the intrinsic parameters of the Morse potential. An exact bound state solution is obtained in the presence of this mass distribution.
Keywords:  Schrödinger equation      Morse potential      Laplace transformation method      position-dependent mass  
Received:  28 April 2016      Revised:  08 June 2016      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
Corresponding Authors:  S Miraboutalebi     E-mail:  smirabotalebi@gmail.com

Cite this article: 

S Miraboutalebi The bound state solution for the Morse potential with a localized mass profile 2016 Chin. Phys. B 25 100301

[1] Kuijken K and Gilmore G 1989 Mon. Not. R. Astron. Soc. 239 571
[2] Coles P and Jones B 1991 Mon. Not. R. Astron. Soc. 248 1
[3] Miraboutalebi S and Salehi H 2006 Gen. Rel. Grav. 38 269
[4] Miraboutalebi S, Jalalzadeh S, Movahed M S and Sepangi H R 2008 Mon. Not. R. Astron. Soc. 385 986
[5] von Roos O 1983 Phys. Rev. B 27 7547
[6] von Roos O and Mavromatis H 1985 Phys. Rev. B 31 2294
[7] Weisbuch C and Vinter B 1997 Quantum Semiconductor Heterostructure (New York: Academic Press)
[8] Harison P 2000 Quantum Wells, Wires and Dots (New York: Wiley)
[9] Rajashabala S and Navaneethakrishnan K 2006 Mod. Phys. Lett. B 20 1529
[10] Peter A J 2009 Int. J. Mod. Phys. B 23 5109
[11] Arias de Saavedra F, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[12] Geller M R and Kohn W 1993 Phys. Rev. Lett. 70 3103
[13] Barranco M, Pi M, Gatica S M, Hernández E S and Navarro J 1997 Phys. Rev. B 56 8997
[14] De Saavedra F A, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[15] Ben Daniel D J and Duke C B 1966 Phys. Rev. 152 683
[16] Li T L and Kuhn K J 1993 Phys. Rev. B 47 12760
[17] Gora T and Williams F 1969 Phys. Rev. 177 1179
[18] Zhu Q G and Kroemer H 1983 Phys. Rev. B 27 3519
[19] Vubangsi M, Tchoffo M and Fai L C 2014 Cent. Eur. J. Phys 1 [arXiv: 1408.2104. 2014 ]
[20] Alhaidari A D 2002 Phys. Rev. A 66 042116
[21] Yu J and Dong S H 2004 Phys. Lett. A 325 194
[22] Chen G 2005 Chin. Phys. 14 460
[23] Chen G and Chen Z D 2004 Phys. Lett. A 331 312
[24] Flügge S 1974 Practical Quantum Mechanics (Berlin: Springer)
[25] Dong S H 2007 Factorization Method in Quantum Mechanics (Berlin: Springer)
[26] Plastino A R, Rigo A, Casas M, Garcias F and Plastino A 1999 Phys. Rev. A 60 4318
[27] Chen G, Chen Z D and Lou Z M 2004 Phys. Lett. A 331 374
[28] Chen G, Chen Z D and Xuan P C 2006 Phys. Lett. A 352 317
[29] Ramazan Koç and Mehmet Koca 2003 J. Phys. A: Math. Gen. 36 8105
[30] Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290
[31] Kumar R and Chand F 2012 Phys. Scr. 85 055008
[32] Abdelmonem M S, Nasser I, Bahlouli H, Al Khawaja U and Alhaidari A D 2009 Phys. Lett. A 373 2408
[33] Nasser I, Abdelmonem M S, Bahlouli H and Alhaidari A D 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4245
[34] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[35] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[36] Kumar R and Chand F 2013 Commun. Theor. Phys. 59 528
[37] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[38] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. C 19 221
[39] Maksimenko N V and Kuchin S M 2011 Russ. Phys. J. 54 57
[40] Meyur S, Maji S and Debnath S 2014 Adv. High Energ. Phys. ID952597
[41] Kreyszing E 1979 Advanced Engineering Mathematics (New York: John Wiley and Sons)
[42] Schrödinger E 1926 Ann. Phys. 384 361
[43] Englefield M J 1968 J. Austral. Math. Soc. 8 557
[44] Englefield M J 1974 J. Math. Anal. Appl. 48 270
[45] Swainson R A and Drake G W F 1991 J. Phys. A: Math. Gen. 24 79
[46] Chen G 2004 Phys. Lett. A 326 55
[47] Chen G 2005 Chin. Phys. 14 1075
[48] Arda A and Sever R 2012 J. Math. Chem. 50 971
[49] Miraboutalebi S and Rajaei L 2014 J. Math. Chem. 52 1119
[50] Das T 2015 J. Math. Chem. 53 618
[51] Morse P M 1929 Phys. Rev. 34 57
[52] Chen G 2004 Phys. Lett. A 329 22
[53] de Souza Dutra A and Chen G 2006 Phys. Lett. A 349 297
[54] Chen G 2005 Phys. Lett. A 339 300
[55] Plastino A R, Rigo A, Casas M, Garcias F and Plastino A 1999 Phys. Rev. A 60 4318
[56] Bagchi B, Gorain P S and Quesne C 2006 Mod. Phys. Lett. A 21 2703
[57] Rajbongshi H and Singh N N 2015 Theor. Math. Phys. 183 715
[58] Ikhdair S M 2012 Mol. Phys. 110 1415
[59] Arda A and Sever R 2011 Commun. Theor. Phys. 56 51
[60] Ovando G, Morales J and López-Bonilla J L 2013 J. Mol. Model. 19 2007
[61] Moya-Cessa H M, Soto-Eguibar F, Christodoulides D N 2014 J. Math. Phys. 55 082103
[62] Alhaidari A D 2003 Int. J. Theor. Phys. 42 2999
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[6] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[7] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[8] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[9] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[10] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[11] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[12] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[13] Binding energy of the donor impurities in GaAs-Ga1-xAlxAs quantum well wires with Morse potential in the presence of electric and magnetic fields
Esra Aciksoz, Orhan Bayrak, Asim Soylu. Chin. Phys. B, 2016, 25(10): 100302.
[14] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[15] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
No Suggested Reading articles found!