CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles |
Li Liu(刘莉)1, Shouyu Wang(王守宇)1, Zi Yin(殷子)1, Weifang Liu(刘卫芳)2, Xunling Xu(徐训岭)2, Chuang Zhang(张闯)1, Xiu Li(李秀)1, Jiabin Yang(杨佳斌)1 |
1. College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China; 2. Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, China |
|
|
Abstract Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La0.1Bi0.9-xSrxFeOy (LBSF, x=0, 0.2, 0.4) with dopant Sr2+ ions were synthesized by the sol-gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ~2.08 eV to ~1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO3-based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO3.
|
Received: 14 January 2016
Revised: 25 May 2016
Accepted manuscript online:
|
PACS:
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104202 and 51572193). |
Corresponding Authors:
Shouyu Wang
E-mail: shouyu.wang@yahoo.com
|
Cite this article:
Li Liu(刘莉), Shouyu Wang(王守宇), Zi Yin(殷子), Weifang Liu(刘卫芳), Xunling Xu(徐训岭), Chuang Zhang(张闯), Xiu Li(李秀), Jiabin Yang(杨佳斌) Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles 2016 Chin. Phys. B 25 097801
|
[1] |
Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
|
[2] |
Fiebig M and Haston K 2002 Nature 419 818
|
[3] |
Coey J M D, Douvalis A P, Fitzgerald C B and Venkatesan M 2004 Appl. Phys. Lett. 84 1332
|
[4] |
Kimura T, Sekio Y and Nakamura H 2008 Nat. Mater. 7 291
|
[5] |
Hill N A 2000 J. Phys. Chem. B. 104 6694
|
[6] |
Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
|
[7] |
Li S, Nechache R, Harnagea C, Nikolova L and Rose F 2012 Appl. Phys. Lett. 101 192903
|
[8] |
Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X and Musfeldt J L 2008 Appl. Phys. Lett. 92 091905
|
[9] |
Li T, Shen J, Li N and Ye M 2013 Mater. Lett. 91 42
|
[10] |
Lan C, Jiang Y and Yang S 2011 J. Mater. Sci. 46 734
|
[11] |
Yuan G L and Wing S 2006 J. Appl. Phys. 100 024109
|
[12] |
Yan Z, Wang K F, Qu J F and Wang Y 2007 Appl. Phys. Lett. 91 082906
|
[13] |
Agarwal R A, Sanghi S and Ashima 2011 J. Appl. Phys. 110 073909
|
[14] |
Gavriliuk A G, Struzhkin V V, Lyubutin I S, Ovchinnikov S G, Hu M Y and Chow P 2008 Phys. Rev. B 77 155112
|
[15] |
Kundys B, Maignan A, Martin C, Nguyen N and Simon C 2008 Appl. Phys. Lett. 92 112905
|
[16] |
Singh P, Park Y A, Sunga K D, Hura N, Jung J H, Nohb W S, Kimb J Y, Yoonc J and Jo Y 2010 Solid State Commun. 150 431
|
[17] |
Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W and Ramesh R 2010 Nat. Nanotechnol. 5 143
|
[18] |
MacChesney J B, Sherwood R C and Potter J F 1965 J. Chem. Phys. 43 1907
|
[19] |
Bhushan B, Basumallick A, Vasanthacharya N Y, Kumar S and Das D 2010 Solid State Sci. 12 1063
|
[20] |
Brinkman K, Iijima T and Takamura H 2010 Solid State Ionics 181 53
|
[21] |
Wang B, Wang S, Gong L and Zhou Z 2012 Ceram. Int. 38 6643
|
[22] |
Pandit P, Satapathy S, Gupta P K and Sathe V G 2009 J. Appl. Phys. 106 114105
|
[23] |
Reddy V R, Kothari D, Gupta A and Gupta S M 2009 Appl. Phys. Lett. 94 082505
|
[24] |
Makhdoom A R, Akhtar M J, Rafiq M A and Hassan M M 2012 Ceram. Int. 38 3829
|
[25] |
Brinkman K, Iijima T, Nishida K, Katoda T and Funakubo H 2007 Ferroelectrics 357 1
|
[26] |
Wang D H, Goh W C, Ning M and Ong C K 2006 Appl. Phys. Lett. 88 212907
|
[27] |
Zhang H, Liu W F, Wu P, Hai X, Guo M, Wang S Y, Gao J, Xi X J, Wang X, Guo F, Xu X L, Wang C, Liu G Y and Chu W G 2014 J. Name. 6 18
|
[28] |
Wang X, Wang S Y, Liu W F, Xi X J, Zhang H, Guo F, Xu X L, Li M, Liu L, Zhang C, Li X and Yang J B 2015 J. Nanopart. Res. 17 209
|
[29] |
Han Y L, Liu W F, Wu P, Xu X L, Guo M C, Rao G H and Wang S Y 2016 J. Alloys. Compd. 661 115
|
[30] |
Borisevich A Y, Chang H J, Huijben M, Oxley M P, Okamoto S, Niranjan M K, Burton J D, Tsymbal E Y, Chu Y H, Yu P, Ramesh R, Kalinin S V and Pennycook S J 2010 Phys. Rev. Lett. 105 087204
|
[31] |
Hauser A J, Zhang J, Mier L, Ricciardo R, Woodward P M, Gustafson T L, Brillson L J and Yang F Y 2008 Appl. Phys. Lett. 92 222901
|
[32] |
Kawae T, Terauchi Y, Tsuda H, Kumeda M and Morimoto A 2009 Appl. Phys. Lett. 94 112904
|
[33] |
Qi X, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
|
[34] |
Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M and Liu Z G 2004 Appl. Phys. Lett. 84 1731
|
[35] |
Rodrigues H O, Pires Jr G F M, Almeida J S, Sancho E O, Ferreira A C, Silva M A S and Sombra A S B 2010 J. Phys. Chem. Solids. 71 1329
|
[36] |
Yu X and An X 2009 Solid State Commun. 149 711
|
[37] |
Guo M C, Liu W F, Xu X L, Wu P, Zhang H, Han Y L, Rao G H and Wang S Y 2015 J. Nanopart. Res. 17 1
|
[38] |
Huang F Z, Wang Z J, Lu X M, Zhang J T, Min K L, Lin W W, Ti R X, Xu T T, He J, Yue C and Zhu J S 2013 Sci. Rep. 3 2907
|
[39] |
Reetu, Agarwal A, Sanghi S, Ashima, Ahlawat N and Monica 2012 J. Appl. Phys. 111 113917
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|