Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097801    DOI: 10.1088/1674-1056/25/9/097801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

Li Liu(刘莉)1, Shouyu Wang(王守宇)1, Zi Yin(殷子)1, Weifang Liu(刘卫芳)2, Xunling Xu(徐训岭)2, Chuang Zhang(张闯)1, Xiu Li(李秀)1, Jiabin Yang(杨佳斌)1
1. College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China;
2. Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, China
Abstract  Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La0.1Bi0.9-xSrxFeOy (LBSF, x=0, 0.2, 0.4) with dopant Sr2+ ions were synthesized by the sol-gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ~2.08 eV to ~1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO3-based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO3.
Keywords:  BiFeO3      doping      conductivity      magnetic properties  
Received:  14 January 2016      Revised:  25 May 2016      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104202 and 51572193).
Corresponding Authors:  Shouyu Wang     E-mail:  shouyu.wang@yahoo.com

Cite this article: 

Li Liu(刘莉), Shouyu Wang(王守宇), Zi Yin(殷子), Weifang Liu(刘卫芳), Xunling Xu(徐训岭), Chuang Zhang(张闯), Xiu Li(李秀), Jiabin Yang(杨佳斌) Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles 2016 Chin. Phys. B 25 097801

[1] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[2] Fiebig M and Haston K 2002 Nature 419 818
[3] Coey J M D, Douvalis A P, Fitzgerald C B and Venkatesan M 2004 Appl. Phys. Lett. 84 1332
[4] Kimura T, Sekio Y and Nakamura H 2008 Nat. Mater. 7 291
[5] Hill N A 2000 J. Phys. Chem. B. 104 6694
[6] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[7] Li S, Nechache R, Harnagea C, Nikolova L and Rose F 2012 Appl. Phys. Lett. 101 192903
[8] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X and Musfeldt J L 2008 Appl. Phys. Lett. 92 091905
[9] Li T, Shen J, Li N and Ye M 2013 Mater. Lett. 91 42
[10] Lan C, Jiang Y and Yang S 2011 J. Mater. Sci. 46 734
[11] Yuan G L and Wing S 2006 J. Appl. Phys. 100 024109
[12] Yan Z, Wang K F, Qu J F and Wang Y 2007 Appl. Phys. Lett. 91 082906
[13] Agarwal R A, Sanghi S and Ashima 2011 J. Appl. Phys. 110 073909
[14] Gavriliuk A G, Struzhkin V V, Lyubutin I S, Ovchinnikov S G, Hu M Y and Chow P 2008 Phys. Rev. B 77 155112
[15] Kundys B, Maignan A, Martin C, Nguyen N and Simon C 2008 Appl. Phys. Lett. 92 112905
[16] Singh P, Park Y A, Sunga K D, Hura N, Jung J H, Nohb W S, Kimb J Y, Yoonc J and Jo Y 2010 Solid State Commun. 150 431
[17] Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W and Ramesh R 2010 Nat. Nanotechnol. 5 143
[18] MacChesney J B, Sherwood R C and Potter J F 1965 J. Chem. Phys. 43 1907
[19] Bhushan B, Basumallick A, Vasanthacharya N Y, Kumar S and Das D 2010 Solid State Sci. 12 1063
[20] Brinkman K, Iijima T and Takamura H 2010 Solid State Ionics 181 53
[21] Wang B, Wang S, Gong L and Zhou Z 2012 Ceram. Int. 38 6643
[22] Pandit P, Satapathy S, Gupta P K and Sathe V G 2009 J. Appl. Phys. 106 114105
[23] Reddy V R, Kothari D, Gupta A and Gupta S M 2009 Appl. Phys. Lett. 94 082505
[24] Makhdoom A R, Akhtar M J, Rafiq M A and Hassan M M 2012 Ceram. Int. 38 3829
[25] Brinkman K, Iijima T, Nishida K, Katoda T and Funakubo H 2007 Ferroelectrics 357 1
[26] Wang D H, Goh W C, Ning M and Ong C K 2006 Appl. Phys. Lett. 88 212907
[27] Zhang H, Liu W F, Wu P, Hai X, Guo M, Wang S Y, Gao J, Xi X J, Wang X, Guo F, Xu X L, Wang C, Liu G Y and Chu W G 2014 J. Name. 6 18
[28] Wang X, Wang S Y, Liu W F, Xi X J, Zhang H, Guo F, Xu X L, Li M, Liu L, Zhang C, Li X and Yang J B 2015 J. Nanopart. Res. 17 209
[29] Han Y L, Liu W F, Wu P, Xu X L, Guo M C, Rao G H and Wang S Y 2016 J. Alloys. Compd. 661 115
[30] Borisevich A Y, Chang H J, Huijben M, Oxley M P, Okamoto S, Niranjan M K, Burton J D, Tsymbal E Y, Chu Y H, Yu P, Ramesh R, Kalinin S V and Pennycook S J 2010 Phys. Rev. Lett. 105 087204
[31] Hauser A J, Zhang J, Mier L, Ricciardo R, Woodward P M, Gustafson T L, Brillson L J and Yang F Y 2008 Appl. Phys. Lett. 92 222901
[32] Kawae T, Terauchi Y, Tsuda H, Kumeda M and Morimoto A 2009 Appl. Phys. Lett. 94 112904
[33] Qi X, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
[34] Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M and Liu Z G 2004 Appl. Phys. Lett. 84 1731
[35] Rodrigues H O, Pires Jr G F M, Almeida J S, Sancho E O, Ferreira A C, Silva M A S and Sombra A S B 2010 J. Phys. Chem. Solids. 71 1329
[36] Yu X and An X 2009 Solid State Commun. 149 711
[37] Guo M C, Liu W F, Xu X L, Wu P, Zhang H, Han Y L, Rao G H and Wang S Y 2015 J. Nanopart. Res. 17 1
[38] Huang F Z, Wang Z J, Lu X M, Zhang J T, Min K L, Lin W W, Ti R X, Xu T T, He J, Yue C and Zhu J S 2013 Sci. Rep. 3 2907
[39] Reetu, Agarwal A, Sanghi S, Ashima, Ahlawat N and Monica 2012 J. Appl. Phys. 111 113917
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[6] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[7] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[8] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[9] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[10] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[11] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[12] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[13] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[14] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[15] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
No Suggested Reading articles found!