Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 093102    DOI: 10.1088/1674-1056/25/9/093102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First principle calculations of thermodynamic properties of pure graphene sheet and graphene sheets with Si, Ge, Fe, and Co impurities

A Kheyri1, Z Nourbakhsh2
1. Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran;
2. Physics Department, Faculty of Science, University of Isfahan, Isfahan, Iran
Abstract  The thermal properties of pure graphene and graphene-impurity (impurity = Fe, Co, Si, and Ge) sheets have been investigated at various pressures (0-7 GPa) and temperatures (0-900 K). Some basic thermodynamic quantities such as bulk modulus, coefficient of volume thermal expansion, heat capacities at constant pressure and constant volume of these sheets as a function of temperature and pressure are discussed. Furthermore, the effect of the impurity density and tensile strain on the thermodynamic properties of these sheets are investigated. All of these calculations are performed based on the density functional theory and full quasi harmonic approximation.
Keywords:  density functional theory      graphene      impurity      thermal properties  
Received:  14 December 2015      Revised:  15 April 2016      Accepted manuscript online: 
PACS:  31.15.E-  
  73.22.Pr (Electronic structure of graphene)  
  65.80.Ck (Thermal properties of graphene)  
Corresponding Authors:  Z Nourbakhsh     E-mail:  z.nourbakhsh@sci.ui.ac.ir

Cite this article: 

A Kheyri, Z Nourbakhsh First principle calculations of thermodynamic properties of pure graphene sheet and graphene sheets with Si, Ge, Fe, and Co impurities 2016 Chin. Phys. B 25 093102

[1] Heyrovska R 2008 arXiv:0804.4086
[2] Novoselov S 2010 Scientific Background on the Nobel Prize in Physics 2010, GRAPHENE (The Royal Swedish Academy of Science)
[3] Wallace P R 1947 Phys. Rev. 71 622
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang, Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232
[6] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[7] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[8] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[9] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2014 WIEN2k, An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Vienna: University of Technology)
[10] Anderson O K 1975 Phys. Rev. B 12 3060
[11] Loucks T L and Benjamin W A 1967 Augmented Plan Wave Method (New York: W.A. Benjamin, Inc)
[12] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Thomson Learning Inc)
[13] Chen X J, Zhang C, Meng Y, Zhang R Q, Lin H Q, Struzhkin V V and Mao H K 2011 Phys. Rev. Lett. 106 135502
[14] Umemoto K, Wentzcovitch R M, Saito S and Miyake T 2010 Phys. Rev. Lett. 104 125504
[15] Wood B C and Marzari N 2009 Phys. Rev. Lett. 103 185901
[16] Oganov A R, Chen J, Gatti C, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[17] Birch F 1947 Phys. Rev. 71 809
[18] Keyri A, Nourbakhsh Z and Darabi E 2016 J. Supercond. Nov. Magn. 29 985
[19] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[20] Frank I W, Tanenbaum D M, Van der Zande A M and McEuen P L 2007 Vac. Sci. Technol. B 25 2558
[21] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120
[22] Lier G V, Alsenoy C V, Doren V V and Geerlings P 2000 Chem. Phys. Lett. 326 181
[23] Zhao H, Min K and Aluru N R 2009 Nano Lett. 9 3012
[24] Zhao H and Aluru N R 2010 J. Appl. Phys. 108 064321
[25] Sakhaee-Pour A 2009 Solid State Commun. 149 91
[26] Zakharchenko K V, Katsnelson M I and Fasolino A 2009 Phys. Rev. Lett. 102 046808
[27] Tsai J and Tu J 2010 Mater. Des. 31 194
[28] McSkimin H J and Andreatch P 1972 J. Appl. Phys. 43 2944
[29] Roundy D and Cohen M L 2001 Phys. Rev. B 64 212103
[30] Zhang Y, Sun H and Chen C 2004 Phys. Rev. Lett. 93 195504
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[15] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
No Suggested Reading articles found!