Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090702    DOI: 10.1088/1674-1056/25/9/090702
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD

Zhao-Yi Zhu(朱召义)1,2, Da-Yu Li(李大禹)1, Li-Fa Hu(胡立发)1, Quan-Quan Mu(穆全全)1, Cheng-Liang Yang(杨程亮)1, Zhao-Liang Cao(曹召良)1, Li Xuan(宣丽)1
1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device (EMCCD) applied in the Shack-Hartmann wavefront sensor (S-H WFS) in adaptive optics (AO). However, when the brightness of the target changes in a large scale, the fixed electron multiplying (EM) gain will not be suited to the sensing limitation. Therefore an auto-gain-control method based on the brightness of light-spots array in S-H WFS is proposed in this paper. The control value is the average of the maximum signals of every light spot in an array, which has been demonstrated to be kept stable even under the influence of some noise and turbulence, and sensitive enough to the change of target brightness. A goal value is needed in the control process and it is predetermined based on the characters of EMCCD. Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust, the sensing SNR reaches the maximum for the corresponding signal level, and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band.
Keywords:  adaptive optics      Shack-Hartmann wavefront sensor      electron multiplying charge-coupled-device (EMCCD)      auto-gain-control method  
Received:  25 May 2016      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  95.75.Qr (Adaptive and segmented optics)  
  95.55.Cs (Ground-based ultraviolet, optical and infrared telescopes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 61205021, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Corresponding Authors:  Li Xuan     E-mail:  xuanli@ciomp.ac.cn

Cite this article: 

Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽) High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD 2016 Chin. Phys. B 25 090702

[1] Martin J B 2014 Light: Science & Applications 3 1
[2] Chen H, Xuan L, Hu L F, Cao Z L and Mu Q Q 2010 Chinese Journal of Liquid Crystals and Displays 25 379
[3] Xuan L, Li D Y and Liu Y G 2015 Chinese Journal of Liquid Crystals and Displays 30 1
[4] Jiang Z, Gong S and Dai Y 2005 Optics & Laser Technology 38 614
[5] Primot J 2003 Opt. Comm. 222 81
[6] Li J, Gong Y, Chen H F and Hu X R 2015 Opt. Comm. 336 127
[7] Lane R G and Tallon M 1992 Appl. Opt. 31 6902
[8] HuangS Y, Ning Y, Xi F J and Jiang Z F 2013 Opt. Comm. 288 7
[9] Nicolle M, Fusco T, Rousset G and Michau V 2004 Opt. Lett. 29 2743
[10] Denvir D J and Conroy E 2002 Proc. SPIE 4877 55
[11] Downing M, Finger G, Baade D, Hubin N, Iwert O and Kolb J 2008 Proc. SPIE 7015 70151R
[12] Feautrier P, Gach J L, Balard P, Guillaume C, Downing M, Stadler E and Magnard Y 2008 Proc. SPIE 7021 70210C
[13] Feautrier P, Gach J L, Balard P, Guillaume C, Downing M, Hubin N, Stadler E and Magnard Y 2010 Proc. SPIE 7736 77360Z
[14] Feautrier P, Gach J L, Balard P, Guillaume C, Downing M, Hubin N, Stadler E and Magnard Y 2011 Publications of the Astronomical Society of the Pacific 123 263
[15] Foppiani I, Baffa C, Biliotti V, Bregoli G, Cosentino G, Giani E, Esposito S and Marano B 2003 Proc. SPIE 4839 312
[16] Qian Y, Zhang W, Liu J, Chen Q and Gu G 2014 Proc. SPIE 9273 92732J
[17] Fowler K R 2004 Proc. IEEE Transactions on Instrumentation and Measurement 53 1057
[18] Dayton D, Pierson B and Spielbusch B 1992 Opt. Lett. 17 1737
[19] SamPat N, Venkataraman S, Yeh T and Kremens R 1999 Proc. SPIE 3650 100
[20] Denvir D J and Conroy E 2003 Proc. SPIE 4796 164
[21] Mantravadi S V, Rhoadarmer T A and Glas R S 2004 Proc. SPIE 5553 290
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[5] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[6] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[7] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰). Chin. Phys. B, 2015, 24(8): 084214.
[8] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽). Chin. Phys. B, 2014, 23(9): 094211.
[9] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[10] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[11] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!