Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077306    DOI: 10.1088/1674-1056/25/7/077306

Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films

Hong-Rui Zhang(张洪瑞)1, Yuan-Bo Liu(刘渊博)1, Shuan-Hu Wang(王拴虎)2, De-Shun Hong(洪德顺)1, Wen-Bin Wu(吴文彬)3, Ji-Rong Sun(孙继荣)1
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Shanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China;
3 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230026, China

The anisotropic transport property was investigated in a phase separation La0.67Ca0.33MnO3 (LCMO) film grown on (001)-oriented NdGaO3 (NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropic-strain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property.

Keywords:  electronic transport      magnetic field      electric currents      light illuminations  
Received:  19 February 2016      Revised:  13 April 2016      Accepted manuscript online: 
PACS:  73.43.Qt (Magnetoresistance)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
  73.50.Pz (Photoconduction and photovoltaic effects)  

Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801, 2012CB921403, and 2013CB921701) and the National Natural Science Foundation of China (Grant Nos. 11074285, 51372064, and 11134007).

Corresponding Authors:  Ji-Rong Sun     E-mail:

Cite this article: 

Hong-Rui Zhang(张洪瑞), Yuan-Bo Liu(刘渊博), Shuan-Hu Wang(王拴虎), De-Shun Hong(洪德顺), Wen-Bin Wu(吴文彬), Ji-Rong Sun(孙继荣) Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films 2016 Chin. Phys. B 25 077306

[1] Shenoy V B, Sarma D D and Rao C N R 2006 Chem. Phys. Chem 7 2053
[2] Cox S, Singleton J, McDonald R D, Migliori A and Littlewood P B 2008 Nat. Mater. 7 25
[3] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[4] Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H and Guan P C 2004 Appl. Phys. Lett. 86 122502
[5] Hu F X and Gao J 2004 Phys. Rev. B 69 212413
[6] Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y 1997 Nature 388 50
[7] Yoshizawa H, Kawano H, Tomioka Y and Tokura Y 1995 Phys. Rev. B 52 R13145
[8] Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
[9] Sheng Z G, Sun Y P, Dai J M, Zhu X B and Song W H 2006 Appl. Phys. Lett. 89 082503
[10] Fiebig M, Miyano K, Tomioka Y and Tokura Y 1998 Science 280 1925
[11] Hwang H Y, Palstra T T M, Cheong S W and Batlogg B 1995 Phys. Rev. B 52 15046
[12] Zayak A T, Huang X, Neaton J B and Rabe K M 2008 Phys. Rev. B 77 214410
[13] Ward T Z, Budai J D, Gai Z, Tischler J Z, Yin L and Shen J 2009 Nat. Phys. 5 885
[14] Huang Z, Wang L F, Chen P F, Gao G Y, Tan X L, Zhi B W, Xuan X F and Wu W B 2012 Phys. Rev. B 86 014410
[15] Wang L F, Tan X L, Chen P F, Zhi B W, Sun Z G, Huang Z, Gao G Y and Wu W B 2013 Appl. Phys. Lett. 103 072407
[16] Huang Z, Wang L, Tan X, Chen P, Gao G and Wu W 2010 J. Appl. Phys. 108 083912
[17] Amaral V S, Lourenco A A C S, Araújo J P, Tavares P B, Alves E, Sousa J B, Vieirad J M, Silva M F da and Soares J C 2000 J. Magn. Magn. Mater. 211 1
[18] Chen X G, Yang J B, Yang Y B, Wang C S, Liu S Q, Zhang Y, Han J Z and Yang Y C 2014 J. Appl. Phys. 115 043904
[19] Hardy V, Wahl A and Martin C 2001 Phys. Rev. B 64 064402
[20] Prokhorov V G, Komashko V A, Svetchnikov V L, Lee Y P and Park J S 2004 Phys. Rev. B 69 014403
[21] Liu Y B, Sun J R and Shen B G 2013 J. Appl. Phys. 114 193704
[22] Wang L F, Huang Z, Tan X L, Chen P F, Zhi B W, Li G M and Wu W B 2010 Appl. Phys. Lett. 97 242507
[23] Garbarino G, Acha C, Levy P, Koo T Y and Cheong S W 2006 Phys. Rev. B 74 100401
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[9] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[10] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[11] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[12] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[13] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[14] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[15] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
No Suggested Reading articles found!