Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057305    DOI: 10.1088/1674-1056/25/5/057305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon

Qingxue Huang(黄庆学)1, Fenghua Chen(陈峰华)1, Mingang Zhang(张敏刚)1, Xiaohong Xu(许小红)2
1. Heavy Machinery Engineering Research Center of Education Ministry, College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Linfen 041004, China
Abstract  Highly textured Heusler alloy Mn46Ni42Sn11Sb1 ribbons were prepared by melt spinning. The annealed high Mn content Mn46Ni42Sn11Sb1 ribbon cross-section microstructure, crystal structure, martensitic transformation (MT), and magnetoresistance (MR) properties were investigated. The MR in the annealed ribbon was assessed by the magnetic field direction perpendicular to the ribbon surface with the magnetic field up to 30 kOe. The large negative value of 25% for MR was obtained at 244 K. The exchange bias (EB) effects of the as-spun and annealed ribbons were investigated. After annealing, the EB effects have been improved by about 25 Oe at the temperature of 50 K. The magnetizations have increased approximately by 10% more than the as-spun ribbon.
Keywords:  Heusler alloy      melt spun      magnetoresistance      exchange bias  
Received:  10 December 2015      Revised:  25 January 2016      Accepted manuscript online: 
PACS:  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB722801), the Postdoctoral Science Foundation of China (Grant No. 2015M571285), the National Natural Science Foundation of China (Grant No. 51401140), the Postdoctoral Research Station Foundation of Taiyuan University of Science and Technology, China (Grant Nos. 20142014, 20152041, and 20151082), the Natural Science Foundation of Shanxi Province, China (Grants Nos. 2015021019, 2015091011, and 2015081011), and the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).
Corresponding Authors:  Qingxue Huang, Fenghua Chen     E-mail:  qxhuang_pd@163.com;phycfh@163.com

Cite this article: 

Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红) Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon 2016 Chin. Phys. B 25 057305

[1] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
[2] Sharma V K, Chattopadhyay M K, Shaeb K H B, Chouhan A and Roy S B 2006 Appl. Phys. Lett. 89 222509
[3] Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K and Ishida K 2006 Appl. Phys. Lett. 89 182510
[4] Chatterjee S, Giri S, Majumdar S and De S K 2008 Phys. Rev. B 77 012404
[5] Wang B M, Wang L, Liu Y, Zhao B C, Zhao Y, Yang Y and Zhang H 2009 J. Appl. Phys. 106 063909
[6] Dincer I, Yüzüak E and Elerman Y 2010 J. Alloy. Compd. 506 508
[7] Pal D, Ghosh A and Mandal K 2014 J. Magn. Magn. Mater. 360 183
[8] Banerjee A, Chaddah P, Dash S, Kumar K, Lakhani A, Chen X and Ramanujan R V 2011 Phys. Rev. B 84 214420
[9] Sánchez Llamazares J L, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando, Escoda L, Suñol J J and Varga R 2008 Appl. Phys. Lett. 92 012513
[10] Ghosh A and Mandal K 2013 J. Phys. D: Appl. Phys. 46 435001
[11] Ma S C, Wang D H, Zhong Z C, Luo J M, Xu J L and Du Y W 2013 Appl. Phys. Lett. 102 032407
[12] Khan M, Pathak A K, Paudel M R, Dubenko I, Stadler S and Ali N 2008 J. Magn. Magn. Mater. 320 L21
[13] Xuan H C, Zheng Y X, Ma S C, Cao Q Q, Wang D H and Du Y W 2010 J. Appl. Phys. 108 103920
[14] Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y and Wu G H 2011 J. Appl. Phys. 110 013916
[15] Xuan H, Zhang Y, Li H, Han P, Wang D and Du Y W 2015 Phys. Status Solidi A 212 1954
[16] Chen F H, Gong C W, Guo Y P, Zhang M G and Chai Y 2013 Phys. Status Solidi A 210 2762
[17] Xuan H, Deng Y, Wang D, Zhang C, Han Z and Du Y 2008 J. Phys. D: Appl. Phys. 41 215002
[18] Chen F H, Zhang M G, Chai Y S and Gong C W 2012 Phys. Status Solidi A 209 1557
[19] Chen F H, Gong C W, Guo Y P, Zhang M G and Chai Y S 2014 Chin. Phys. B 23 067501
[20] Esakki Muthu S, Rama Rao N V, Sridhara Rao D V, Manivel Raja M, Devarajan U and Arumugam S 2011 J. Appl. Phys. 110 023904
[21] Xuan H C, Cao Q Q, Zhang C L, Ma S C, Chen S Y, Wang D H and Du Y W 2010 Appl. Phys. Lett. 96 202502
[22] Wang D H, Zhang C L, Xuan H C, Han Z D, Zhang J R, Tang S L, Gu B X and Du Y W 2007 J. Appl. Phys. 102 013909
[23] Xuan H C, Wang D H, Zhang C L, Han Z D, Liu H S, Gu B X and Du Y W 2007 Solid State Commun. 142 591
[24] Kozina X, Karel J, Ouardi S, Chadov S, Fecher G H, Felser C, Stryganyuk G, Balke B, Ishikawa T, Uemura T, Yamamoto M, Ikenaga E, Ueda S and Kobayashi K 2014 Phys. Rev. B 89 125116
[25] Feng Y, Tian C L, Yuan H K, Kuang A L and Chen H 2015 J. Phys. D: Appl. Phys. 48 445003
[26] Feng Y, Zhou T, Chen X, Yuan H and Chen H 2015 J. Magn. Magn. Mater. 387 118
[27] Feng Y, Zhou T, Chen X, Yuan H and Chen H 2015 J. Phys. D: Appl. Phys. 48 285302
[28] Zhao X G, Tong M, Shih C W, Li B, Chang W C, Liu W and Zhang Z D 2013 J. Appl. Phys. 113 17A913
[29] Wang W, Yu J, Zhai Q, Luo Z and Zheng H 2013 Intermetallics 42 126
[30] Hernando B, Sánchez Llamazares J L, Prida V M, Baldomir D, Serantes D, Ilyn M and González J 2009 Appl. Phys. Lett. 94 222502
[31] Ghosh A and Mandal K 2014 Appl. Phys. Lett. 104 031905
[32] Zhao X G, Hsieh C C, Lai J H, Cheng X J, Chang W C, Cui W B, Liu W and Zhang Z D 2010 Scripta Mater. 63 250
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[7] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[8] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[9] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[10] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[11] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[12] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[13] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[14] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[15] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
No Suggested Reading articles found!