Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047501    DOI: 10.1088/1674-1056/25/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites

R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare
Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
Abstract  In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-xMgxFe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ~32 nm to ~36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ~57.35 emu/g to ~61.49 emu/g and ~603.26 Oe to ~684.11 Oe (1 Oe=79.5775 A·m-1), respectively. The higher values of magnetization Ms and Mr suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices.
Keywords:  co-precipitation      magnetic materials      spinel ferrite      magnetic properties  
Received:  01 October 2015      Revised:  16 December 2015      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.75.-c (Magnetic properties of nanostructures)  
  81.20.Fw (Sol-gel processing, precipitation)  
Fund: Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).
Corresponding Authors:  R M Rosnan     E-mail:  rizuanmr@gmail.com

Cite this article: 

R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites 2016 Chin. Phys. B 25 047501

[1] Šepelák V, Baabe D, Mienert D, Schultze D, Krumeich F, Litterst F J and Becker K D 2003 J. Magn. Magn. Mater. 257 377
[2] Ramana C V, Kolekar Y D, Kamala Bharathi K, Sinha B and Ghosh K 2013 J. Appl. Phys. 114 183907
[3] Karanjkar M M, Tarwal N L, Vaigankar A S and Patil P S 2013 Ceram. Int. 39 1757
[4] Tan M, Köseoğlu Y, Alan F and Şentürk E 2011 J. Alloys Compd. 509 9399
[5] Patange S, Shirsath S E, Jangam Lohar G K, Jadhav S S and Jadhav K 2011 J. Appl. Phys. 109 053909
[6] Islam M U, Abbas T, Niazi S B, Ahmad Z, Sabeen S and Chaudhry M A 2004 Solid State Commun. 130 353
[7] He X M, Yan S M, Li Z W, Zhang X, Song X Y, Qiao W, Zhong W and Du Y W 2015 Chin. Phys. B 24 127502
[8] Ati A A, Othaman Z and Samavati A 2013 J. Mol. Struct. 1052 177
[9] Li L Z, Tu X Q, Wang R and Peng L 2015 J. Magn. Magn. Mater. 381 328
[10] Joshi S, Kumar S M, Chhoker S, Srivastava G, Jewariya M and Singh V N 2014 J. Mol. Struct. 1076 55
[11] Zhu X F and Chen L F 2011 J. Magn. Magn. Mater. 323 3138
[12] Balaji S, Selvan R K, Berchmans L J, Angappan S, Subramanian K and Augustin C 2005 Mater. Sci. Eng. B 119 119
[13] Rahimi M, Kameli P, Ranjbar M, Hajihashemi H and Salamati H 2013 J. Mater. Sci. 48 2969
[14] Li L Z, Yu Z, Lan Z W, Sun K and Wu C J 2014 Ceram. Int. 40 13917
[15] Wang L, Lu M, Liu Y, Li J, Liu M and Li H 2015 Ceram. Int. 41 4176
[16] Deraz N M 2012 Ceram. Int. 38 511
[17] Sontu U B, Yelasani V and Musugu V R R 2015 J. Magn. Magn. Mater. 374 376
[18] Tsay C Y, Lin Y H and Jen S U 2015 Ceram. Int. 41 5531
[19] Puli V S, Adireddy S and Ramana C V 2015 J. Alloys Compd. 644 470
[20] Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, Li Z Z and Lang L L 2014 Chin. Phys. B 23 107503
[21] Aghav P S, Dhage V N, Mane M L, Shengule D R, Dorik R G and Jadhav K M 2011 Physica B: Condens. Matter 406 4350
[22] Kumari S, Kumar V, Kumar P, Kar M and Kumar L 2015 Adv. Powder Technol. 26 213
[23] Sundararajan M, Kennedy L J, Aruldoss U, Khadeer S, Vijaya J J and Dunn S 2015 Mater. Sci. Semicond. Process. 40 1
[24] Sekhar B C, Rao G S N, Caltun O F, Lakshmi B D, Rao B P and Rao P S V S 2016 J. Magn. Magn. Mater. 398 59
[25] Reddy C V, Byon C, Narendra Baskar B D, Srinivas G, Shim J and Prabhakar Vattikuti S V 2015 Superlattices Microstruct. 82 165
[26] Akther Hossain A K M, Seki M, Kawai T and Tabata H 2004 J. Appl. Phys. 96 1273
[27] John Berchmans L, Kalai Selvan R, Selva Kumar P and Augustin C 2004 J. Magn. Magn. Mater. 279 103
[28] Mirzaee S, Farjami Shayesteh S and Mahdavifar S 2014 Polymer 55 3713
[29] Raut A V, Barkule R S, Shengule D R, Jadhav K M 2014 J. Magn. Magn. Mater. 358-359 87
[30] Raju K, Venkataiah G and Yoon D H 2014 Ceram. Int. 40 9337
[31] Rezlescu N, Rezlescu E, Pasnicu C and Craus M 1994 J. Phys: Condens. Mater. 6 5707
[32] Naeem M, Shah N A, Gul I H and Maqsood A 2009 J. Alloys. Compd. 487 739
[33] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
[34] Reshak A H 2014 J. Alloys Compd. 589 213
[35] Waldron R D 1955 Phys. Rev. 99 1727
[36] Kumar V, Rana A, Kumar N and Pant R P 2011 Int. J. Appl. Ceram. Technol. 8 120
[37] Priyadharsini P, Pradeep A, Rao P S and Chandrasekaran G 2009 Mater. Chem. Phys. 116 207
[38] Pradeep A, Priyadharsini P and Chandrasekaran G 2008 J. Magn. Magn. Mater. 320 2774
[39] Gabal M A 2009 J. Magn. Magn. Mater. 321 3144
[40] Roy P K and Bera J 2006 J. Magn. Magn. Mater. 298 38
[41] Gabal M A, El-Shishtawy R M and Al Angari Y M 2012 J. Magn. Magn. Mater. 324 2258
[42] Nath S K, Rahman M M, Sikder S, Hakim M and Hoque S M 2013 ARPN J. Sci. Tech. 3 106
[43] Yafet Y and Kittel C 1952 Phys. Rev. 87 290
[44] Bobade D H, Rathod S M and Mane M L 2012 Physica B: Condens. Matter 407 3700
[45] Panneer Muthuselvam I and Bhowmik R N 2010 J. Magn. Magn. Mater. 322 767
[46] Iqbal M J, Ashiq M N, Hernandez-Gomez P and Munoz J M 2007 Scripta Mater. 57 1093
[1] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[2] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[5] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[6] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[7] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[8] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[9] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[10] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[11] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[12] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[13] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[14] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
[15] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
No Suggested Reading articles found!