Dan Hu(胡丹)1, Hong-yan Wang(王红燕)2, Zhen-jie Tang(汤振杰)1,Xi-wei Zhang(张希威)1, Lin Ju(鞠琳)1, Hua-ying Wang(王华英)3
1. College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China; 2. College of Media and Communications, Anyang Normal University, Anyang 455000, China; 3. College of Science, Hebei University of Engineering, Handan 056038, China
Abstract A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).
Corresponding Authors:
Dan Hu, Hua-ying Wang
E-mail: tylzhd@163.com;pbxsyingzi@126.com
Cite this article:
Dan Hu(胡丹), Hong-yan Wang(王红燕), Zhen-jie Tang(汤振杰),Xi-wei Zhang(张希威), Lin Ju(鞠琳), Hua-ying Wang(王华英) Design of a multiband terahertz perfect absorber 2016 Chin. Phys. B 25 037801
[1]
Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[2]
Seddon N and Bearpark T 2003 Science 302 1537
[3]
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[4]
Pendry J B 2000 Phys. Rev. Lett. 85 3966
[5]
Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 17802
[6]
Chen J F, Hu Z Y, Wang G D, Huang X T, Wang S M, Hu X W and Liu M H 2015 IEEE Trans. Antennas. Propag. 63 4367
[7]
Hu D, Wang X K, Feng S F, Ye J S, Sun W F, Kan Q, Klar P J and Zhang Y 2013 Adv. Opt. Mater. 1 186
[8]
Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9]
Li L Y, Wang J, Du H L, Wang J F and Qu S B 2015 Chin. Phys. B 24 24215
[10]
Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
[11]
Dayal G and Ramakrishna S A 2012 Opt. Express 20 17503
[12]
Cao T, Wei C W, Simpson R E, Zhang L and Cryan M J 2014 Sci. Rep. 4 3955
[13]
Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103(R)
[14]
Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[15]
Grant J, Ma Y, Saha S, Lok L B, Khalid A and Cumming D R S 2011 Opt. Lett. 36 1524
[16]
Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L, Zhang H W 2014 Chin. Phys. B 23 47803
[17]
Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L and Cui T J 2012 Appl. Phys. Lett. 101 154102
[18]
Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2013 Eur. Phys. J. B 86 304
[19]
Cao S, Yu W X, Wang T S, Shen H H, Han X D, Xu W B and Zhang X M 2014 Opt. Mat. Express 4 1876
[20]
Wang G D, Chen J F, Hu X W, Chen Z Q and Liu M H 2014 Prog. Electromag. Res. 145 175
[21]
Chen J F, Huang X T, Zerihun G, Hu Z Y, Wang S M, Wang G D, Hu X W and Liu M H 2015 J. Electron. Mater. 44 4269
[22]
Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[23]
Hendrickson J, Guo J P, Zhang B Y, Buchwald W and Soref R 2012 Opt. Lett. 37 371
[24]
Hu C G, Liu L Y, Zhao Z Y, Chen X N and Luo X G 2009 Opt. Express 17 16745
[25]
Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L and Ma Y G 2014 Appl. Phys. Lett. 105 021102
[26]
Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z G and Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103
[27]
Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F and Zhai X 2014 IEEE Photon. Technol. Lett. 26 111
[28]
Yin S, Chen J F, Xu W D, Jiang W, Yuan J, Yin G, Xie L J, Ying Y B and Ma Y G 2015 Appl. Phys. Lett. 107 073903
[29]
Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[30]
Yahiaoui R, Guillet J P, Miollis F and Mounaix P 2013 Opt. Lett. 38 4988
[31]
Tao H, Strikwerda A C, Fan K, Bingham C M, Padilla W J, Zhang X and Averitt R D 2008 J. Phys. D: Appl. Phys. 41 232004
[32]
Chen C Y, Wu S C and Yen T J 2008 Appl. Phys. Lett. 93 034110
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.