1. Department of Physics, Tsinghua University, Beijing 100084, China; 2. Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China; 3. Department of Electrical Engineering, Princeton University, Princeton, Princeton, NJ 08544, USA; 4. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated. The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V·s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxial compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.
(Density functional theory, local density approximation, gradient and other corrections)
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00602) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02708-002).
Corresponding Authors:
Jun Xu
E-mail: junxu@tsinghua.edu.cn
Chau R, Datta S, Doczy M, Doyle B, Jin J, Kavalieros J, Majumdar A, Metz M and Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153
[2]
Takagi S, Irisawa T, Tezuka T, Numata T, Nakaharai S, Hirashita N, Moriyama Y, Usuda K, Toyoda E, Dissanayake S, Shichijo M, Nakane R, Sugahara S, Takenaka M and Sugiyama N 2008 IEEE Trans. Elec-tron. Dev. 55 21
[3]
Tan Z, Zhao L F, Wang J and Xu J 2013 ECS Solid State Lett. 2 61
[4]
Chin H C, Gong X, Liu X, Lin Z and Yeo Y C 2009 Symp. VLSI Tech. Dig. p. 244
[5]
Zhao L F, Tan Z, Wang J and Xu J 2014 Chin. Phys. B 23 78102
[6]
Oh H J, Lin J Q, Suleiman S A B, Lo G Q, Kwong D L, Chi D Z and Lee S J 2009 Tech. Dig. Int. Electron Devices Meet. p. 339
[7]
Wu Y Q, Xu M, Wang R S, Koybasi O and Ye P D 2009 Tech. Dig. Int. Electron Devices Meet. p. 323
[8]
Chang H D, Sun B, Xue B Q, Liu G M, Zhao W, Wang S K and Liu H G 2013 Chin. Phys. B 22 077306
[9]
Liu C, Zhang Y M, Zhang Y M and Lü H L 2013 Chin. Phys. B 22 076701
[10]
Zhao L F, Tan Z, Wang J and Xu J 2014 Appl. Surf. Sci. 289 601
[11]
Tan Z, Zhao L F, Wang J and Xu J 2014 Chin. Phys. B 23 017701
[12]
Wang C, Xu M, Gu J J, Zhang D W and Ye P D 2012 Electrochem. Solid-State Lett. 15 51
[13]
Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron. Dev. 58 3407
[14]
Yuan Z, Kumar A, Chen C Y, Nainani A, Bennett B R, Boos J B and Saraswat K C 2013 IEEE Electron Device Lett. 34 1367
[15]
Zhao L F, Tan Z, Bai R X, Cui N, Wang J and Xu J 2013 Appl. Phys. Express 6 056502
[16]
Suthram S, Sun Y, Majhi P, Ok I, Kim H, Harris H R, Goel N, Parthasarathy S, Koehler A, Acosta T, Nishida T, Tseng H H, Tsai W, Lee J, Jammy R and Thompson S E 2008 Symp. VLSI Tech. Dig. p. 182
[17]
Pikus G E and Bir G L 1974 Symmetry and Strained-Induced Effects in Semiconductors (New York: Wiley)
[18]
Kopf C, Kosina H and Selberherr S 1997 Solid-State Electron. 41 1139
[19]
Chin H C, Gong X, Liu X and Yeo Y C 2009 IEEE Electron Device Lett. 30 805
[20]
Xia L and del Alamo J A 2009 Appl. Phys. Lett. 95 243504
[21]
Nainani A, Yum J, Barnett J, Hill R, Goel N, Huang J, Majhi P, Jammy R and Saraswat K C 2010 Appl. Phys. Lett. 96 242110
[22]
Xu M, Wang R S and Ye P D 2011 IEEE Electron Device Lett. 32 883
[23]
Zhao L F, Tan Z, Wang J and Xu J 2015 Chin. Phys. B 24 018501
[24]
Chu R L, Chiang T H, Hsueh W J, Chen K H, Lin K Y, Brown G J, Chyi J I, Kwo J and Hong M 2014 Appl. Phys. Lett. 105 182106
[25]
Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M and Takagi S 2014 Appl. Phys. Lett. 104 093509
[26]
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[27]
Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[28]
Ning F, Tang L M, Zhang Y and Chen K Q 2013 J. Appl. Phys. 114 224304
[29]
Song A Y, Bhat R, Bouzi P, Zah C E and Gmachl C F 2015 arxiv: 1507.06016
[30]
Nguyen B M, Yi W, Noah R, Thorp J and Sokolich M 2015 Appl. Phys. Lett. 106 032107
[31]
Khurgin J B 2008 Appl. Phys. Lett. 93 091104
[32]
Ahmad S, Mahanti S D, Hoang K and Kanatzidis M G 2006 Phys. Rev. B 74 155205
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.