Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 026802    DOI: 10.1088/1674-1056/25/2/026802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

Hai-Yang Song(宋海洋)1 and Yu-Long Li(李玉龙)2
1. College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation (1210) [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the 'double hump' behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials.

Keywords:  crystalline/amorphous nanocomposites      cack growth      deformation behavior      molecular dynamics simulation  
Received:  03 July 2015      Revised:  29 August 2015      Accepted manuscript online: 
PACS:  68.35.Ct (Interface structure and roughness)  
  02.70.Ns (Molecular dynamics and particle methods)  
  62.20.mt (Cracks)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

Corresponding Authors:  Hai-Yang Song     E-mail:  gsfshy@sohu.com

Cite this article: 

Hai-Yang Song(宋海洋) and Yu-Long Li(李玉龙) Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites 2016 Chin. Phys. B 25 026802

[1] Kaushik V, Narasimhan R and Mishra P K 2014 Mater. Sci. Eng. A 590 174
[2] Tang T, Kim S and Horstemeyer M F 2010 Comput. Mater. Sci. 48 426
[3] Tang T, Kim S, Jordon J B, Horstemeyer M F and Wang P T 2011 Comput. Mater. Sci. 50 2977
[4] Song H Y and Li Y L 2012 J. Appl. Phys. 111 044322
[5] Song H Y, An M R, Li Y L and Deng Q 2014 J. Appl. Phys. 116 214305
[6] Song H Y and Li Y L 2012 Phys. Lett. A 376 529
[7] Zhu Y T, Liao X Z and Wu X L 2012 Prog. Mater. Sci. 57 1
[8] Yuan F P and Wu X L 2013 J. Appl. Phys. 113 203516
[9] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[10] Miracle D B 2014 Nat. Mater. 13 432
[11] Gu X W, Jafary-Zadeh M, Chen D Z, Wu Z X, Zhang Y W, Srolovitz D J and Greer J R 2014 Nano Lett. 14 5858
[12] Zhou H F, Zhong C, Cao Q P, Qu S X, Wang X D and Yang W 2014 Acta Mater. 68 32
[13] Imran M, Hussain F, Rashid M, Cai Y Q and Ahmad S A 2013 Chin. Phys. B 22 096101
[14] Wang G H, Pan H, Ke F J, Xia M F and Bai Y L 2008 Chin. Phys. B 17 259
[15] Jiang M Q, Wilde G and Dai L H 2015 Mech. Mater. 81 72
[16] Ma B Y, Zhang A M, Shang H L, Sun S Y and Li G Y 2014 Acta Phys. Sin. 63 136801 (in Chinese)
[17] Wei H Q, Long Z L, Xu F, Zhang P and Tang Y 2014 Acta Phys. Sin. 63 118101 (in Chinese)
[18] Zhao P, Li J and Wang Y Z 2014 Acta Mater. 73 149
[19] Wang Z, Sun B A, Bai H Y and Wang W H 2014 Nat. Commun. 5 5823
[20] Wang Y M, Li J, Hamza A B and Barbee T W 2007 Porc. Natl. Acad. Sci. 104 11155
[21] Guo W, Jagle E, Choi P P, Yao J H, Kostka A, Schneider J M and Raabe D 2014 Phys. Rev. Lett. 113 035501
[22] Wu Z and Curtin W A 2015 Acta Mater. 88 1
[23] Wang L and Liu H 2006 J. Non-Cryst. Solids 352 2880
[24] Liu F X, Liu R S, Hou Z Y, Liu H R, Tian Z A and Zhou L L 2009 Ann. Phys. 324 332
[25] Wang C C and Wong C H 2011 J. Alloys Compd. 509 10222
[26] Hou Z Y, Liu L X, Liu R S, Tian Z A and Wang J G 2011 J. Non-Cryst. Solids 357 1430
[27] Liu X Y, Ohotnicky P P, Adams J B, Lane Rohrer C and Hyland R W 1997 Surf. Sci. 373 357
[28] Li B and Ma E 2009 Acta Mater. 57 1734
[29] Li D, Wang F C, Yang Z Y and Zhao Y P 2014 Sci. China-Phys. Mech. Astron. 57 2177
[30] Faken D and Jonsson H 1994 Comput. Mater. Sci. 2 279
[31] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[32] Song H Y and Li Y L 2012 J. Appl. Phys. 112 054322
[33] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J and Ma E 2014 Nat. Commun. 5 3297
[34] Song H Y and Li Y L 2015 Phys. Lett. A 379 2087
[35] Sha Z D, Pei Q X, Liu Z S, Zhang Y W and Wang T J 2015 Sci. Rep. 5 10797
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!