CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Vibrational features of confined water in nanoporous TiO2 by Raman spectra |
Xin Gao(高欣)1, Qiang Wang(王强)2, Gang Sun(孙刚)2, Chen-Xi Li(李晨曦)2, Lin Hu(胡林)1 |
1. College of Science, Guizhou University, Guiyang 550025, China;
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Raman spectra of confined water adsorbed in nanoporous TiO2 are obtained in experiment. TiO2 samples with different pore diameters under different humidity conditions are investigated. The results indicate that the symmetric vibrational mode of water molecule is destroyed when relative humidity decreases. This indicates that the interaction between water molecules and surface of TiO2 becomes stronger when the distance between water molecules and surface turns smaller, and the interaction plays a major role in depressing the symmetric vibrational peak. The spectra of confined water in TiO2 and Vycor are compared. When filling fractions are the same, their spectra show distinctions no matter whether they are in partial filling condition or in full filling condition. The spectra of HDO confined in TiO2 with different filling fractions are compared with each other. There is no clear distinction among their vibrational peaks, and the peaks mainly relate to asymmetric vibration. Therefore, the interaction between water molecules and the wall of pore decouples the symmetric vibrational mode only, and the influences on asymmetric vibrational mode show little differences among different filling fractions.
|
Received: 01 August 2015
Revised: 01 November 2015
Accepted manuscript online:
|
PACS:
|
68.08.-p
|
(Liquid-solid interfaces)
|
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
33.20.Tp
|
(Vibrational analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304049 and 11264006), the Guizhou Provincial Science and Technology Foundation, China (Grant No. J[2010]2132), and the Doctor Funds of Guizhou University, China (Grant No. [2012] 020). |
Corresponding Authors:
Xin Gao
E-mail: gaoxin0526@163.com
|
Cite this article:
Xin Gao(高欣), Qiang Wang(王强), Gang Sun(孙刚), Chen-Xi Li(李晨曦), Lin Hu(胡林) Vibrational features of confined water in nanoporous TiO2 by Raman spectra 2016 Chin. Phys. B 25 026801
|
[1] |
Harano Y and Kinoshita M 2005 Biophys. J. 89 2701
|
[2] |
Sui H, Han B G, Lee J K, Walian P and Jap B K 2001 Nature 414 872
|
[3] |
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
|
[4] |
Thomas S and Sobhan C B 2011 Nanoscale Res. Lett. 6 377
|
[5] |
Maniwa Y, Matsuda K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y and Kataura H 2007 Nat. Mater. 6 135
|
[6] |
Noy A, Parka H G, Fornasiero F, Holt J K, Grigoropoulos C P and Bakajin O 2007 Nano Today 2 22
|
[7] |
Luo C, Fa W, Zhou J, Dong J and Zeng X C 2008 Nano Lett. 8 2607
|
[8] |
Mikami F, Matsuda K, Kataura H and Maniwa Y 2009 ACS Nano 3 1279
|
[9] |
Nguyen T D, Tseng H -R, Celestre P C, Flood A H, Liu Y, Stoddart J F and Zink J I 2005 Proc. Natl. Acad. Sci. USA 102 10029
|
[10] |
Hensen E J M and Smit B 2002 J. Phys. Chem. B 106 12664
|
[11] |
Coudert F X, Cailliez F, Vuilleumier R, Fuchs A H and Boutin A 2009 Faraday Discuss. 141 377
|
[12] |
Floquet N, Coulomb J P, Dufau N and Andre G 2004 J. Phys. Chem. B 108 13107
|
[13] |
Demontis P, Gulín-González J, Masia M and Suffritti G B 2010 J. Phys.: Condens. Matter 22 284106
|
[14] |
Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R and Sliwinska-Bartkowiak M 2006 J. Phys.: Con-dens. Matter 18 R15
|
[15] |
Huang X F, Wang Q, Liu X X, Yang S H, Li C X, Sun G, Pan L Q and Lu K Q 2009 J. Phys. Chem. C 113 18768
|
[16] |
Kyakuno H, Matsuda K, Yahiro H, Inami Y, Fukuoka T, Miyata Y, Yanagi K, Maniwa Y, Kataura H, Saito T, Yumura M and Iijima S 2011 J. Chem. Phys. 134 244501
|
[17] |
Maniwa Y, Kumazawa Y, Saito Y, Tou H, Kataura H, Ishii H, Suzuki S, Achiba Y, Fujiwara A and Suematsu H 1999 Jpn. J. Appl. Phys. 38 L668
|
[18] |
Maniwa Y, Kataura H, Abe M, Suzuki S, Achiba Y, Kira1 H and Matsuda1 K 2002 J. Phys. Soc. Jpn. 71 2863
|
[19] |
Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P, Moravsky A P, Loutfy R O and Burnham C J 2004 Phys. Rev. Lett. 93 035503
|
[20] |
Ghosh S, Ramanathan K V and Sood A K 2004 Europhys. Lett. 65 678
|
[21] |
Matsuda K, Hibi T, Kadowaki H, Kataura H and Maniwa Y 2006 Phys. Rev. B 74 073415
|
[22] |
Sekhaneh W, Kotecha M, Dettlaff-Weglikowska U and Veeman W S 2006 Chem. Phys. Lett. 428 143
|
[23] |
Wang H J, Xi X K, Kleinhammes A and Wu Y 2008 Science 322 80
|
[24] |
Das A, Jayanthi S, Deepak H S M V, Ramanathan K V, Kumar A, Dasgupta C, Ajay K and Sood A K 2010 ACS Nano 4 1687
|
[25] |
Byl O, Liu J C, Wang Y, Yim W L, Johnson J K and Yates J T Jr 2006 J. Am. Chem. Soc. 128 12090
|
[26] |
Cambré S, Schoeters B, Luyckx S, Goovaerts E and Wenseleers W 2010 Phys. Rev. Lett. 104 207401
|
[27] |
Gelb L D, Gubbins K E, Radhakrishnan R and Sliwinska-Bartkowiak M 1999 Rep. Prog. Phys. 62 1573
|
[28] |
Findenegg G H, Jahnert S, Akcakayiran D and Schreiber A 2008 Chem. Phys. Chem. 9 2651
|
[29] |
Bagchi B 2005 Chem. Rev. 105 3197
|
[30] |
Tsukahara T, Hibara A, Ikeda Y and Kitamori T 2007 Angew. Chem. Int. Ed. 46 1180
|
[31] |
Musat R, Renault J P, Candelaresi M, Palmer D J, Le Caër S, Righini R and Pommeret S 2008 Angew. Chem. Int. Ed. 47 8033
|
[32] |
Crupi V, Interdonato S, Longo F, Majolino D, Migliardo P and Venuti V 2008 J. Raman Spectrosc. 39 244
|
[33] |
Majolino D, Corsaro C, Crupi V, Venuti V and Wanderlingh U 2008 J. Phys. Chem. B 112 3927
|
[34] |
Satterfield C N 1991 Heterogeneous catalysis in industrial practice, 2nd edn. (New York: McGraw-Hill)
|
[35] |
Linsebigler A L, Lu G and Yates J T 1995 Chem. Rev. 95 735
|
[36] |
O'Regan B and Grätzel M 1991 Nature 353 737
|
[37] |
Dutta P K, Ginwalla A, Hogg B, Patton B R, Chwieroth B, Liang Z, Gouma P, Mills M and Akbar S 1999 J. Phys. Chem. 103 4412
|
[38] |
Xu Y, Yao K, Zhou X and Cao Q 1993 Sens. Actuators B 14 492
|
[39] |
Kirner U, Schierbaum K D, Göpel W, Leibold B, Nicoloso N, Weppner W, Fischer D and Chu W F 1990 Sens. Actuators B 1 103
|
[40] |
Haugen H J, Monjo M, Rubert M, Verket A, Lyngstadaas S P, Ellingsen J E, Ronold H J and Wohlfahrt J C 2013 Acta Biomater. 9 5390
|
[41] |
Diebold U 2003 Surf. Sci. Rep. 48 53
|
[42] |
Henderson M A 2002 Surf. Sci. Rep. 46 1
|
[43] |
Gao R Q and Hou X M 2013 Int. J. Miner. Metall. Mater. 20 593
|
[44] |
De S, Dutta S, Patra A K, Rana B S, Sinha A K, Saha B and Bhaumik A 2012 Appl. Catal. A: Gen. 435 197
|
[45] |
Lu B, Zhu C, Zhang Z, Lan W and Xie E 2012 J. Mater. Chem. 22 1375
|
[46] |
Carey D M and Korenowski G M 1998 J. Chem. Phys. 108 2669
|
[47] |
Rull F 2002 Pure Appl. Chem. 74 1859
|
[48] |
Czeslik C, Kim Y J and Jonas J 2000 J. Phys. IV 10 103
|
[49] |
Crupi V, Longo F, Majolino D and Venuti V 2007 Eur. Phys. J. Special. Topics 141 61
|
[50] |
Erko M, Findenegg G H, Cade N, Michette A G and Paris O 2011 Phys. Rev. B 84 104205
|
[51] |
Kristiansson O, Lindgren J and Villepin J 1988 J. Phys. Chem. 92 2680
|
[52] |
Fayer M D and Levinger N E 2010 Ann. Rev. Anal. Chem. 3 89
|
[53] |
Smiechowski M and Stangret J 2010 Pure Appl. Chem. 82 1869
|
[54] |
Wang Z, Pang Y and Dlott D D 2004 J. Chem. Phys. 120 8345
|
[55] |
Burikov S, Dolenko S, Dolenko T, Patsaeva S and Yuzhakov V 2010 Mol. Phys. 108 739
|
[56] |
Wang R, Sakai N, Fujishima A, Watanabe T and Hashimoto K 1999 J. Phys. Chem. B 103 2188
|
[57] |
He Y, Li W K, Gong X Q, Dulub O, Selloni A and Diebold U 2009 J. Phys. Chem. 113 10329
|
[58] |
Tilocca A and Selloni A 2003 J. Chem. Phys. 119 7445
|
[59] |
Tilocca A and Selloni A 2004 J. Phys. Chem. B 108 4743
|
[60] |
Max J J and Chapados C 2002 J. Chem. Phys. 116 4626
|
[61] |
Duplan J C, Mahi L and Brunet J L 2005 Chem. Phys. Lett. 413 400
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|