Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 026801    DOI: 10.1088/1674-1056/25/2/026801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Vibrational features of confined water in nanoporous TiO2 by Raman spectra

Xin Gao(高欣)1, Qiang Wang(王强)2, Gang Sun(孙刚)2, Chen-Xi Li(李晨曦)2, Lin Hu(胡林)1
1. College of Science, Guizhou University, Guiyang 550025, China;
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Raman spectra of confined water adsorbed in nanoporous TiO2 are obtained in experiment. TiO2 samples with different pore diameters under different humidity conditions are investigated. The results indicate that the symmetric vibrational mode of water molecule is destroyed when relative humidity decreases. This indicates that the interaction between water molecules and surface of TiO2 becomes stronger when the distance between water molecules and surface turns smaller, and the interaction plays a major role in depressing the symmetric vibrational peak. The spectra of confined water in TiO2 and Vycor are compared. When filling fractions are the same, their spectra show distinctions no matter whether they are in partial filling condition or in full filling condition. The spectra of HDO confined in TiO2 with different filling fractions are compared with each other. There is no clear distinction among their vibrational peaks, and the peaks mainly relate to asymmetric vibration. Therefore, the interaction between water molecules and the wall of pore decouples the symmetric vibrational mode only, and the influences on asymmetric vibrational mode show little differences among different filling fractions.

Keywords:  porous titanium dioxide      confined water      Raman spectrum      asymmetric vibration  
Received:  01 August 2015      Revised:  01 November 2015      Accepted manuscript online: 
PACS:  68.08.-p (Liquid-solid interfaces)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  33.20.Tp (Vibrational analysis)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304049 and 11264006), the Guizhou Provincial Science and Technology Foundation, China (Grant No. J[2010]2132), and the Doctor Funds of Guizhou University, China (Grant No. [2012] 020).

Corresponding Authors:  Xin Gao     E-mail:  gaoxin0526@163.com

Cite this article: 

Xin Gao(高欣), Qiang Wang(王强), Gang Sun(孙刚), Chen-Xi Li(李晨曦), Lin Hu(胡林) Vibrational features of confined water in nanoporous TiO2 by Raman spectra 2016 Chin. Phys. B 25 026801

[1] Harano Y and Kinoshita M 2005 Biophys. J. 89 2701
[2] Sui H, Han B G, Lee J K, Walian P and Jap B K 2001 Nature 414 872
[3] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
[4] Thomas S and Sobhan C B 2011 Nanoscale Res. Lett. 6 377
[5] Maniwa Y, Matsuda K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y and Kataura H 2007 Nat. Mater. 6 135
[6] Noy A, Parka H G, Fornasiero F, Holt J K, Grigoropoulos C P and Bakajin O 2007 Nano Today 2 22
[7] Luo C, Fa W, Zhou J, Dong J and Zeng X C 2008 Nano Lett. 8 2607
[8] Mikami F, Matsuda K, Kataura H and Maniwa Y 2009 ACS Nano 3 1279
[9] Nguyen T D, Tseng H -R, Celestre P C, Flood A H, Liu Y, Stoddart J F and Zink J I 2005 Proc. Natl. Acad. Sci. USA 102 10029
[10] Hensen E J M and Smit B 2002 J. Phys. Chem. B 106 12664
[11] Coudert F X, Cailliez F, Vuilleumier R, Fuchs A H and Boutin A 2009 Faraday Discuss. 141 377
[12] Floquet N, Coulomb J P, Dufau N and Andre G 2004 J. Phys. Chem. B 108 13107
[13] Demontis P, Gulín-González J, Masia M and Suffritti G B 2010 J. Phys.: Condens. Matter 22 284106
[14] Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R and Sliwinska-Bartkowiak M 2006 J. Phys.: Con-dens. Matter 18 R15
[15] Huang X F, Wang Q, Liu X X, Yang S H, Li C X, Sun G, Pan L Q and Lu K Q 2009 J. Phys. Chem. C 113 18768
[16] Kyakuno H, Matsuda K, Yahiro H, Inami Y, Fukuoka T, Miyata Y, Yanagi K, Maniwa Y, Kataura H, Saito T, Yumura M and Iijima S 2011 J. Chem. Phys. 134 244501
[17] Maniwa Y, Kumazawa Y, Saito Y, Tou H, Kataura H, Ishii H, Suzuki S, Achiba Y, Fujiwara A and Suematsu H 1999 Jpn. J. Appl. Phys. 38 L668
[18] Maniwa Y, Kataura H, Abe M, Suzuki S, Achiba Y, Kira1 H and Matsuda1 K 2002 J. Phys. Soc. Jpn. 71 2863
[19] Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P, Moravsky A P, Loutfy R O and Burnham C J 2004 Phys. Rev. Lett. 93 035503
[20] Ghosh S, Ramanathan K V and Sood A K 2004 Europhys. Lett. 65 678
[21] Matsuda K, Hibi T, Kadowaki H, Kataura H and Maniwa Y 2006 Phys. Rev. B 74 073415
[22] Sekhaneh W, Kotecha M, Dettlaff-Weglikowska U and Veeman W S 2006 Chem. Phys. Lett. 428 143
[23] Wang H J, Xi X K, Kleinhammes A and Wu Y 2008 Science 322 80
[24] Das A, Jayanthi S, Deepak H S M V, Ramanathan K V, Kumar A, Dasgupta C, Ajay K and Sood A K 2010 ACS Nano 4 1687
[25] Byl O, Liu J C, Wang Y, Yim W L, Johnson J K and Yates J T Jr 2006 J. Am. Chem. Soc. 128 12090
[26] Cambré S, Schoeters B, Luyckx S, Goovaerts E and Wenseleers W 2010 Phys. Rev. Lett. 104 207401
[27] Gelb L D, Gubbins K E, Radhakrishnan R and Sliwinska-Bartkowiak M 1999 Rep. Prog. Phys. 62 1573
[28] Findenegg G H, Jahnert S, Akcakayiran D and Schreiber A 2008 Chem. Phys. Chem. 9 2651
[29] Bagchi B 2005 Chem. Rev. 105 3197
[30] Tsukahara T, Hibara A, Ikeda Y and Kitamori T 2007 Angew. Chem. Int. Ed. 46 1180
[31] Musat R, Renault J P, Candelaresi M, Palmer D J, Le Caër S, Righini R and Pommeret S 2008 Angew. Chem. Int. Ed. 47 8033
[32] Crupi V, Interdonato S, Longo F, Majolino D, Migliardo P and Venuti V 2008 J. Raman Spectrosc. 39 244
[33] Majolino D, Corsaro C, Crupi V, Venuti V and Wanderlingh U 2008 J. Phys. Chem. B 112 3927
[34] Satterfield C N 1991 Heterogeneous catalysis in industrial practice, 2nd edn. (New York: McGraw-Hill)
[35] Linsebigler A L, Lu G and Yates J T 1995 Chem. Rev. 95 735
[36] O'Regan B and Grätzel M 1991 Nature 353 737
[37] Dutta P K, Ginwalla A, Hogg B, Patton B R, Chwieroth B, Liang Z, Gouma P, Mills M and Akbar S 1999 J. Phys. Chem. 103 4412
[38] Xu Y, Yao K, Zhou X and Cao Q 1993 Sens. Actuators B 14 492
[39] Kirner U, Schierbaum K D, Göpel W, Leibold B, Nicoloso N, Weppner W, Fischer D and Chu W F 1990 Sens. Actuators B 1 103
[40] Haugen H J, Monjo M, Rubert M, Verket A, Lyngstadaas S P, Ellingsen J E, Ronold H J and Wohlfahrt J C 2013 Acta Biomater. 9 5390
[41] Diebold U 2003 Surf. Sci. Rep. 48 53
[42] Henderson M A 2002 Surf. Sci. Rep. 46 1
[43] Gao R Q and Hou X M 2013 Int. J. Miner. Metall. Mater. 20 593
[44] De S, Dutta S, Patra A K, Rana B S, Sinha A K, Saha B and Bhaumik A 2012 Appl. Catal. A: Gen. 435 197
[45] Lu B, Zhu C, Zhang Z, Lan W and Xie E 2012 J. Mater. Chem. 22 1375
[46] Carey D M and Korenowski G M 1998 J. Chem. Phys. 108 2669
[47] Rull F 2002 Pure Appl. Chem. 74 1859
[48] Czeslik C, Kim Y J and Jonas J 2000 J. Phys. IV 10 103
[49] Crupi V, Longo F, Majolino D and Venuti V 2007 Eur. Phys. J. Special. Topics 141 61
[50] Erko M, Findenegg G H, Cade N, Michette A G and Paris O 2011 Phys. Rev. B 84 104205
[51] Kristiansson O, Lindgren J and Villepin J 1988 J. Phys. Chem. 92 2680
[52] Fayer M D and Levinger N E 2010 Ann. Rev. Anal. Chem. 3 89
[53] Smiechowski M and Stangret J 2010 Pure Appl. Chem. 82 1869
[54] Wang Z, Pang Y and Dlott D D 2004 J. Chem. Phys. 120 8345
[55] Burikov S, Dolenko S, Dolenko T, Patsaeva S and Yuzhakov V 2010 Mol. Phys. 108 739
[56] Wang R, Sakai N, Fujishima A, Watanabe T and Hashimoto K 1999 J. Phys. Chem. B 103 2188
[57] He Y, Li W K, Gong X Q, Dulub O, Selloni A and Diebold U 2009 J. Phys. Chem. 113 10329
[58] Tilocca A and Selloni A 2003 J. Chem. Phys. 119 7445
[59] Tilocca A and Selloni A 2004 J. Phys. Chem. B 108 4743
[60] Max J J and Chapados C 2002 J. Chem. Phys. 116 4626
[61] Duplan J C, Mahi L and Brunet J L 2005 Chem. Phys. Lett. 413 400
[1] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[2] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[3] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[4] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[5] Layering of confined water between two graphene sheets and its liquid-liquid transition
Xuyan Zhou(周戌燕), Yunrui Duan(段云瑞), Long Wang(王龙), Sida Liu(刘思达), Tao Li(李涛), Yifan Li(李一凡), Hui Li(李辉). Chin. Phys. B, 2017, 26(10): 106401.
[6] Near-zero thermal expansion of In2(1-x)(HfMg)xMo3O12 with tailored phase transition
Yong-Guang Cheng(程永光), Yan-Chao Mao(毛彦超), Xain-Sheng Liu(刘献省), Bao-He Yuan(袁保合), Ming-Ju Chao(晁明举), Er-Jun Liang(梁二军). Chin. Phys. B, 2016, 25(8): 086501.
[7] Strain analysis of free-standing strained silicon-on-insulator nanomembrane
Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强). Chin. Phys. B, 2015, 24(3): 036801.
[8] Synthesis, structure, optical, and electric properties of Ce-doped CuInTe2 compound
Fu Li (付丽), Guo Yong-Quan (郭永权). Chin. Phys. B, 2014, 23(12): 127801.
[9] The effect of anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1ν12 of liquid pyridine
Li Dong-Fei (李东飞), Gao Shu-Qin (高淑琴), Sun Cheng-Lin (孙成林), Li Zuo-Wei (里佐威 ). Chin. Phys. B, 2012, 21(8): 083301.
[10] High-sensitive automatic transient laser-induced breakdown spectroscopy system with high temporal and spatial resolution
Liu Qiao-Jun (刘巧君), S. K. Fong (冯瑞权), Andrew Y. S. Cheng (郑玉臣), Luo Shi-Rong (罗时荣), K. S. Tam (谭建成), Zhu Jian-Hua (朱建华), A. Viseu (冼保生). Chin. Phys. B, 2012, 21(8): 087402.
[11] Substrate-induced stress in silicon nanocrystal/SiO2 multilayer structure
Tao Ye-Liao(陶也了), Zuo Yu-Hua(左玉华), Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), Wang Qi-Ming(王启明), and Xu Jun(徐骏) . Chin. Phys. B, 2012, 21(7): 077402.
[12] $\gamma$ radiation caused graphene defects and increased carrier density
Han Mai-Xing(韩买兴), Ji Zhuo-Yu(姬濯宇), Shang Li-Wei(商立伟), Chen Ying-Ping(陈映平), Wang Hong(王宏), Liu Xin(刘欣), Li Dong-Mei(李冬梅), and Liu Ming(刘明). Chin. Phys. B, 2011, 20(8): 086102.
[13] Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides
Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), and Zheng Xu-Guang(郑旭光) . Chin. Phys. B, 2011, 20(8): 087801.
[14] First-principles calculations on the electronic and vibrational properties of $\beta$-V2O5
Zhou Bo(周波), Su Qing(苏庆), and He De-Yan(贺德衍). Chin. Phys. B, 2009, 18(11): 4988-4994.
No Suggested Reading articles found!