Special Issue:
TOPICAL REVIEW — Fundamental physics research in lithium batteries
|
TOPICAL REVIEW—Fundamental physics research in lithium batteries |
Prev
Next
|
|
|
High-throughput theoretical design of lithium battery materials |
Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed.
|
Received: 11 May 2015
Revised: 13 August 2015
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201). |
Corresponding Authors:
Rui-Juan Xiao
E-mail: rjxiao@iphy.ac.cn
|
Cite this article:
Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉) High-throughput theoretical design of lithium battery materials 2016 Chin. Phys. B 25 018208
|
[1] |
Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N and Levy O 2012 Comput. Mater. Sci. 58 227
|
[2] |
https://www.whitehouse.gov/sites/default/files/microsites/os tp/NSTC/mgi_strategic_plan_-_dec2014.pdf
|
[3] |
Bajorath J 2002 Nature Reviews Drug Discovery 1 882
|
[4] |
ten Bosch J R and Grody W W 2008 Journal of Molecular Diagnostics 10 484
|
[5] |
Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, HideW, Hill D P, Kania R, Schaeffer M, St Pierre S, Twigger S, White O and Rhee S Y 2008 Nature 455 47
|
[6] |
Cawse J N 2002 Experimental Design for Combinatorial and High Throughput Materials Development (Wiley-VCH) p. 336
|
[7] |
Xiang X D, Sun X, Briceno G, Lou Y, Wang K A, Chang H, Wallace-Freedman W G, Chen S W and Schultz P G 1995 Science 268 1738
|
[8] |
Shimizu K D, Snapper M L and Hoveyda A H 1998 Chem. Eur. J. 4 1885
|
[9] |
Jandeleit B, Schaefer D J, Powers T S, Turner H W and Weinberg W H 1999 Angew. Chem. Int. Ed. 38 2494
|
[10] |
Scheidtmann J, Weiß P A and Maier W F 2001 Appl. Catal. A-Gen. 222 79
|
[11] |
Inglese J, Auld D S, Jadhav A, Johnson R L, Simeonov A, Yasgar A, Zheng W and Austin C P 2006 Proc. Natl. Acad. Sci. USA 103 11473
|
[12] |
Potyrailo R A, Chisholm B J, Olson D R, Brennan M J and Molaison C A 2002 Anal. Chem. 74 5105
|
[13] |
Potyrailo R A, Chisholm B J, Morris W G, Cawse J N, Flanagan W P, Hassib L, Molaison C A, Ezbiansky K, Medford G and Reitz H 2003 J. Comb. Chem. 5 472
|
[14] |
Hoogenboom R, Meier M A R and Schubert U S 2003 Macromol. Rapid Commun. 24 16
|
[15] |
Pope A J, Haupts U M and Moore K J 1999 Drug Discov. Today 4 350
|
[16] |
Setyawan W and Curtarolo S 2010 Comput. Mater. Sci. 49 299
|
[17] |
Strasser P, Fan Q, Devenney M and Weinberg W H, Liu P and Norskov J K 2003 J. Phys. Chem. B 107 11013
|
[18] |
Greeley J, Jaramillo T F, Bonde J, Chorkendorff I and Norskov J K 2006 Nat. Mater. 5 909
|
[19] |
Andersson M P, Bligaard T, Kustov A, Larsen K E, Greeley J, Johannessen, Christensen C H and Norskov J K 2006 J. Catal. 239 501
|
[20] |
Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A and Willis R R 2009 J. Am. Chem. Soc. 131 15834
|
[21] |
Wang S, Wang Z, Setyawan W, Mingo N and Curtarolo S 2011 Phys. Rev. X 1 021012
|
[22] |
Yang J, Li H M, Wu T, Zhang W Q, Chen L D and Yang J H 2008 Adv. Funct. Mater. 18 1
|
[23] |
Zhang J W, Liu R H, Cheng N, Zhang Y B, Yang J H, Uher C, Shi X, Chen L D and Zhang W Q 2014 Adv. Mater. 26 3848
|
[24] |
Armiento R, Kozinsky B, Fornari M and Ceder G 2011 Phys. Rev. B 84 014103
|
[25] |
Setyawan W, Gaume R M, Lam S, Feigelson R S and Curtarolo S 2011 Acs Combinatorial Science 13 382
|
[26] |
Yang K, Setyawan W, Wang S, Nardelli B and Curtarolo 2012 Nat. Mater. 11 614
|
[27] |
Hautier G, Jain A, Ong S P, Kang B, Moore C, Doe R and Ceder G 2011 Chem. Mater. 23 3495
|
[28] |
Hautier G, Jain A, Chen H, Moore C, Ong S P and Ceder G 2011 J. Mater. Chem. 21 17147
|
[29] |
Willems T F, Rycroft C H, Kazi M, Meza J C and Haranczyk M 2012 Micropor. Mesopor. Mater. 149 134
|
[30] |
Gao J, Chu G, He M, Zhang S, Xiao R J, Li H and Chen L Q 2014 Sci. China-Phys. Mech. Astron. 57 1526
|
[31] |
Morgan D, Ceder G and Curtarolo S 2005 Meas. Sci. Technol. 16 296
|
[32] |
Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Persson K A and Ceder G 2011 Comp. Mater. Sci. 50 2295
|
[33] |
Buch I, Harvey M J, Giorgino T, Anderson D P and De Fabritiis G 2010 J. Chem. Inf. Model. 50 397
|
[34] |
Dolinsky T J, Neilsen J E, McCammon J A and Baker N A 2004 Nucleic Acids Res. 32 W665
|
[35] |
Hornig M and Klamt A 2005 J. Chem. Inf. Model. 45 1169
|
[36] |
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B and Lindahl E 2013 Bioinformatics 29 845
|
[37] |
Jain A, Ong S P, ChenW, Medasani B, Qu X, Kocher M, Brafman M, Petretto G, Rignanese G M, Hautier G, Gunter D and Persson K A 2015 Concurrency Computat.: Pract. Exper. 27 5037
|
[38] |
Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Comp. Mater. Sci. 81 446
|
[39] |
Zu C X and Li H 2011 Energy Environ. Sci. 4 2614
|
[40] |
Ceder G, Chiang Y M, Sadoway D R, Aydinol M K, Jang Y I and Huang B 1998 Nature 392 694
|
[41] |
Anurova N A, Blatov V A, Ilyushin G D, Blatova O A, Ivanov-Schitz A K and Dem'yanets L N 2008 Solid State Ionics 179 2248
|
[42] |
Thomas N W 1991 Acta Cryst. 47 588
|
[43] |
Müller C, Zienicke E, Adams S, Habasaki J and Maass P 2007 Phys. Rev. B 75 014203
|
[44] |
Adams S and Rao R P 2009 Phys. Chem. Chem. Phys. 11 3210
|
[45] |
Hafner J, Wolverton C and Ceder G 2006 MRS Bull. 31 659
|
[46] |
Meng Y S and Arroyo-de Dompablo M E 2009 Energy Environ. Sci. 2 589
|
[47] |
Ouyang C Y and Chen L Q 2013 Sci. China-Phys. Mech. Astron. 56 2278
|
[48] |
Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
|
[49] |
Ling S G, Gao J, Chu G, Huang J, Xiao R J, Ouyang C Y, Li H and Chen L Q 2015 Mater. China 34 23
|
[50] |
Mueller T, Hautier G, Jain A and Ceder G 2011 Chem. Mater. 23 3854
|
[51] |
Nishijima M, Ootani T, Kamimura Y, Sueki T, Esaki S, Murai S, Fujita K, Tanaka K, Ohira K, Koyama Y and Tanaka I 2014 Nat. Commun. 5 4553
|
[52] |
Li H, Wang Z X, Chen L Q and Huang X J 2009 Adv. Mater. 21 4593
|
[53] |
Kirklin S, Meredig B and Wolverton C 2013 Adv. Energy Mater. 3 252
|
[54] |
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
|
[55] |
Adams S and Rao R P 2011 Phys. Status Solidi A 208 1746
|
[56] |
Zhang S, Wang S F, Ling S G, Gao J, Wu J Y, Xiao R J, Li H and Chen L Q 2014 Energy Storage Sci. Tech. 3 376
|
[57] |
Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher C A J, Moriwake H and Tanaka I 2013 Adv. Energy Mater. 3 980
|
[58] |
Halls M D and Tasaki K 2010 J. Power Sources 195 1472
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|