Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018208    DOI: 10.1088/1674-1056/25/1/018208
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

High-throughput theoretical design of lithium battery materials

Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed.

Keywords:  lithium battery materials      high-throughput calculations      density functional theory      virtual screening  
Received:  11 May 2015      Revised:  13 August 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

Corresponding Authors:  Rui-Juan Xiao     E-mail:  rjxiao@iphy.ac.cn

Cite this article: 

Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉) High-throughput theoretical design of lithium battery materials 2016 Chin. Phys. B 25 018208

[1] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N and Levy O 2012 Comput. Mater. Sci. 58 227
[2] https://www.whitehouse.gov/sites/default/files/microsites/os tp/NSTC/mgi_strategic_plan_-_dec2014.pdf
[3] Bajorath J 2002 Nature Reviews Drug Discovery 1 882
[4] ten Bosch J R and Grody W W 2008 Journal of Molecular Diagnostics 10 484
[5] Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, HideW, Hill D P, Kania R, Schaeffer M, St Pierre S, Twigger S, White O and Rhee S Y 2008 Nature 455 47
[6] Cawse J N 2002 Experimental Design for Combinatorial and High Throughput Materials Development (Wiley-VCH) p. 336
[7] Xiang X D, Sun X, Briceno G, Lou Y, Wang K A, Chang H, Wallace-Freedman W G, Chen S W and Schultz P G 1995 Science 268 1738
[8] Shimizu K D, Snapper M L and Hoveyda A H 1998 Chem. Eur. J. 4 1885
[9] Jandeleit B, Schaefer D J, Powers T S, Turner H W and Weinberg W H 1999 Angew. Chem. Int. Ed. 38 2494
[10] Scheidtmann J, Weiß P A and Maier W F 2001 Appl. Catal. A-Gen. 222 79
[11] Inglese J, Auld D S, Jadhav A, Johnson R L, Simeonov A, Yasgar A, Zheng W and Austin C P 2006 Proc. Natl. Acad. Sci. USA 103 11473
[12] Potyrailo R A, Chisholm B J, Olson D R, Brennan M J and Molaison C A 2002 Anal. Chem. 74 5105
[13] Potyrailo R A, Chisholm B J, Morris W G, Cawse J N, Flanagan W P, Hassib L, Molaison C A, Ezbiansky K, Medford G and Reitz H 2003 J. Comb. Chem. 5 472
[14] Hoogenboom R, Meier M A R and Schubert U S 2003 Macromol. Rapid Commun. 24 16
[15] Pope A J, Haupts U M and Moore K J 1999 Drug Discov. Today 4 350
[16] Setyawan W and Curtarolo S 2010 Comput. Mater. Sci. 49 299
[17] Strasser P, Fan Q, Devenney M and Weinberg W H, Liu P and Norskov J K 2003 J. Phys. Chem. B 107 11013
[18] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I and Norskov J K 2006 Nat. Mater. 5 909
[19] Andersson M P, Bligaard T, Kustov A, Larsen K E, Greeley J, Johannessen, Christensen C H and Norskov J K 2006 J. Catal. 239 501
[20] Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A and Willis R R 2009 J. Am. Chem. Soc. 131 15834
[21] Wang S, Wang Z, Setyawan W, Mingo N and Curtarolo S 2011 Phys. Rev. X 1 021012
[22] Yang J, Li H M, Wu T, Zhang W Q, Chen L D and Yang J H 2008 Adv. Funct. Mater. 18 1
[23] Zhang J W, Liu R H, Cheng N, Zhang Y B, Yang J H, Uher C, Shi X, Chen L D and Zhang W Q 2014 Adv. Mater. 26 3848
[24] Armiento R, Kozinsky B, Fornari M and Ceder G 2011 Phys. Rev. B 84 014103
[25] Setyawan W, Gaume R M, Lam S, Feigelson R S and Curtarolo S 2011 Acs Combinatorial Science 13 382
[26] Yang K, Setyawan W, Wang S, Nardelli B and Curtarolo 2012 Nat. Mater. 11 614
[27] Hautier G, Jain A, Ong S P, Kang B, Moore C, Doe R and Ceder G 2011 Chem. Mater. 23 3495
[28] Hautier G, Jain A, Chen H, Moore C, Ong S P and Ceder G 2011 J. Mater. Chem. 21 17147
[29] Willems T F, Rycroft C H, Kazi M, Meza J C and Haranczyk M 2012 Micropor. Mesopor. Mater. 149 134
[30] Gao J, Chu G, He M, Zhang S, Xiao R J, Li H and Chen L Q 2014 Sci. China-Phys. Mech. Astron. 57 1526
[31] Morgan D, Ceder G and Curtarolo S 2005 Meas. Sci. Technol. 16 296
[32] Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Persson K A and Ceder G 2011 Comp. Mater. Sci. 50 2295
[33] Buch I, Harvey M J, Giorgino T, Anderson D P and De Fabritiis G 2010 J. Chem. Inf. Model. 50 397
[34] Dolinsky T J, Neilsen J E, McCammon J A and Baker N A 2004 Nucleic Acids Res. 32 W665
[35] Hornig M and Klamt A 2005 J. Chem. Inf. Model. 45 1169
[36] Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B and Lindahl E 2013 Bioinformatics 29 845
[37] Jain A, Ong S P, ChenW, Medasani B, Qu X, Kocher M, Brafman M, Petretto G, Rignanese G M, Hautier G, Gunter D and Persson K A 2015 Concurrency Computat.: Pract. Exper. 27 5037
[38] Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Comp. Mater. Sci. 81 446
[39] Zu C X and Li H 2011 Energy Environ. Sci. 4 2614
[40] Ceder G, Chiang Y M, Sadoway D R, Aydinol M K, Jang Y I and Huang B 1998 Nature 392 694
[41] Anurova N A, Blatov V A, Ilyushin G D, Blatova O A, Ivanov-Schitz A K and Dem'yanets L N 2008 Solid State Ionics 179 2248
[42] Thomas N W 1991 Acta Cryst. 47 588
[43] Müller C, Zienicke E, Adams S, Habasaki J and Maass P 2007 Phys. Rev. B 75 014203
[44] Adams S and Rao R P 2009 Phys. Chem. Chem. Phys. 11 3210
[45] Hafner J, Wolverton C and Ceder G 2006 MRS Bull. 31 659
[46] Meng Y S and Arroyo-de Dompablo M E 2009 Energy Environ. Sci. 2 589
[47] Ouyang C Y and Chen L Q 2013 Sci. China-Phys. Mech. Astron. 56 2278
[48] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[49] Ling S G, Gao J, Chu G, Huang J, Xiao R J, Ouyang C Y, Li H and Chen L Q 2015 Mater. China 34 23
[50] Mueller T, Hautier G, Jain A and Ceder G 2011 Chem. Mater. 23 3854
[51] Nishijima M, Ootani T, Kamimura Y, Sueki T, Esaki S, Murai S, Fujita K, Tanaka K, Ohira K, Koyama Y and Tanaka I 2014 Nat. Commun. 5 4553
[52] Li H, Wang Z X, Chen L Q and Huang X J 2009 Adv. Mater. 21 4593
[53] Kirklin S, Meredig B and Wolverton C 2013 Adv. Energy Mater. 3 252
[54] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
[55] Adams S and Rao R P 2011 Phys. Status Solidi A 208 1746
[56] Zhang S, Wang S F, Ling S G, Gao J, Wu J Y, Xiao R J, Li H and Chen L Q 2014 Energy Storage Sci. Tech. 3 376
[57] Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher C A J, Moriwake H and Tanaka I 2013 Adv. Energy Mater. 3 980
[58] Halls M D and Tasaki K 2010 J. Power Sources 195 1472
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!