Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016702    DOI: 10.1088/1674-1056/25/1/016702
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Vortices in dipolar Bose-Einstein condensates in synthetic magnetic field

Qiang Zhao(赵强)1,2 and Qiang Gu(顾强)1
1. Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Science, North China University of Science and Technology, Tangshan 063009, China
Abstract  We study the formation of vortices in a dipolar Bose-Einstein condensate in a synthetic magnetic field by numerically solving the Gross-Pitaevskii equation. The formation process depends on the dipole strength, the rotating frequency, the potential geometry, and the orientation of the dipoles. We make an extensive comparison with vortices created by a rotating trap, especially focusing on the issues of the critical rotating frequency and the vortex number as a function of the rotating frequency. We observe that a higher rotating frequency is needed to generate a large number of vortices and the anisotropic interaction manifests itself as a perceptible difference in the vortex formation. Furthermore, a large dipole strength or aspect ratio also can increase the number of vortices effectively. In particular, we discuss the validity of the Feynman rule.
Keywords:  dipolar condensates      vortex      synthetic magnetic field  
Received:  20 October 2015      Accepted manuscript online: 
PACS:  67.85.De (Dynamic properties of condensates; excitations, and superfluid flow)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274039), the National Basic Research Program of China (Grant No. 2013CB922002), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Qiang Gu     E-mail:  qgu@ustb.edu.cn

Cite this article: 

Qiang Zhao(赵强) and Qiang Gu(顾强) Vortices in dipolar Bose-Einstein condensates in synthetic magnetic field 2016 Chin. Phys. B 25 016702

[1] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[2] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. Lett. 107 190401
[3] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401
[4] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys. 72 126401
[5] Baranov M A, Dalmonte M, Pupillo G and Zoller P 2012 Chem. Rev. 112 5012
[6] Vengalattore M, Leslie S R, Guzman J and Stamper-Kurn D M 2008 Phys. Rev. Lett. 100 170403
[7] Eto Y, Saito H and Hirano T 2014 Phys. Rev. Lett. 112 185301
[8] Bismut G, Pasquiou B, Maréchal E, Pedri P, Vernac L, Gorceix O and Laburthe-Tolra B 2010 Phys. Rev. Lett. 105 040404
[9] Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448 672
[10] Cooper N R, Rezayi E H and Simon S H 2005 Phys. Rev. Lett. 95 200402
[11] Yi S and Pu H 2006 Phys. Rev. A 73 061602(R)
[12] Zhang J and Zhai H 2006 Physics 35 0 (in Chinese)
[13] Liu C F, Wan W J and Zhang G Y 2013 Acta Phys. Sin. 62 200306 (in Chinese)
[14] Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F and Zhang S G 2014 Chin. Phys. B 23 070308
[15] Chen G P 2015 Acta Phys. Sin. 64 030302 (in Chinese)
[16] Lahaye T, Metz J, Fröhlich B, Koch T, Meister M, Griesmaier A, Pfau T, Saito H, Kawaguchi Y and Ueda M 2008 Phys. Rev. Lett. 101 080401
[17] Dum R, Cirac J I, Lewenstein M and Zoller P 1998 Phys. Rev. Lett. 80 2972
[18] Williams J E and Holland M J 1999 Nature 401 568
[19] Stringari S 1999 Phys. Rev. Lett. 82 4371
[20] Lin Y L, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[21] Lin Y L, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[22] Zhao Q and Gu Q 2015 Front. Phys. 10 100306
[23] Cai Y Y, Rosenkranz M, Lei Z and Bao W Z 2010 Phys. Rev. A 82 043623
[24] Bao W Z, Wang H Q and Markowich P A 2005 Commun. Math. Sci. 3 57
[25] Malet F, Kristensen T, Reimann S M and Kavoulakis G M 2011 Phys. Rev. A 83 033628
[26] Kasamatsu K, Tsubota M and Ueda M 2003 Phys. Rev. A 67 033610
[27] Wen L H, Xiong H W and Wu B 2010 Phys. Rev. A 82 053627
[28] Feynman P R 1955 Prog. Low Temp. Phys. 1 17
[29] Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[9] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[13] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[14] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[15] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
No Suggested Reading articles found!