Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118201    DOI: 10.1088/1674-1056/24/11/118201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach

Guo Feng (郭峰)a b, Zhang Hong (张红)d, Hu Hai-Quan (胡海泉)a b, Cheng Xin-Lu (程新路)c, Zhang Li-Yan (张利燕)e
a School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252000, China;
b Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252000, China;
c Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
d School of Physical Science & Technology, Sichuan University, Chengdu 610065, China;
e School of Computer Science, Liaocheng University, Liaocheng 252000, China
Abstract  We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition.
Keywords:  Hugoniot state      nitromethane      molecular dynamics      reactive force field  
Received:  21 March 2015      Revised:  11 July 2015      Accepted manuscript online: 
PACS:  82.20.Wt (Computational modeling; simulation)  
  82.30.-b (Specific chemical reactions; reaction mechanisms)  
  64.30.-t (Equations of state of specific substances)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374217) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BQ008).
Corresponding Authors:  Hu Hai-Quan, Cheng Xin-Lu     E-mail:  gfeng.alan@gmail.com;chengxl@scu.edu.cn

Cite this article: 

Guo Feng (郭峰), Zhang Hong (张红), Hu Hai-Quan (胡海泉), Cheng Xin-Lu (程新路), Zhang Li-Yan (张利燕) Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach 2015 Chin. Phys. B 24 118201

[1] Dlott D D;2011 Ann. Rev. Phys. Chem. 62 575
[2] Yoo C S, Holmes N C, Souers P C, Wu C J, Ree F H and Dick J J;2000 J. Appl. Phys. 88 70
[3] Zhou Q, Chen P W, Ma D Z and Dai K D;2013 J. Appl. Phys. 114 023509
[4] Mundy C J, Curioni A, Goldman N, Will Kuo I F, Reed E J, Fried L E and Ianuzzi M;2008 J. Chem. Phys. 128 184701
[5] Reed E J, Rodriguez A W, Manaa M R, Fried L E and Tarver C M;2012 Phys. Rev. Lett. 109 038301
[6] Kadau K, Germann T C, Lomdahl P S and Holian B L;2002 Science 296 1681
[7] Zhang Q L, Zhang P, Song H F and Liu H F;2008 Chin. Phys. B 17 1341
[8] Bourasseau E, Maillet J B, Desbiens N and Stoltz G;2011 J. Phys. Chem. A 115 10729
[9] Liu H, Li Q K and He Y H;2015 Acta Phys. Sin. 64 018201 (in Chinese)
[10] Zhou Z Q, Nie J X, Guo X Y, Wang Q S, Ou Z C and Jiao Q J;2015 Chin. Phys. Lett. 32 016401
[11] Zhao B, Cui J P and Fan J;2010 Acta Mech. Sin. 26 365
[12] Zybin S, Elert M and White C;2002 Phys. Rev. B 66 220102
[13] Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F and Wei D Q;2012 J. Phys. Chem. B 116 13696
[14] Shan T R, Wixom R R, Mattsson A E and Thompson A P;2013 J. Phys. Chem. B 117 928
[15] Barmes F, Soulard L and Mareschal M;2006 Phys. Rev. B 73 224108
[16] An Q, Goddard W A, Zybin S V, Jaramillo-Botero A and Zhou T T;2013 J. Phys. Chem. C 117 26551
[17] He L, Sewell T D and Thompson D L;2011 J. Chem. Phys. 134 124506
[18] Strachan A, van Duin A C T, Chakraborty D, Dasgupta S and Goddard W A;2003 Phys. Rev. Lett. 91 098301
[19] Reed E, Fried L and Joannopoulos J;2003 Phys. Rev. Lett. 90 235503
[20] Ravelo R, Holian B, Germann T and Lomdahl P;2004 Phys. Rev. B 70 014103
[21] Chen G Y, Jiang X X, Cheng X L and Zhang H;2012 J. Chem. Phys. 137 054504
[22] Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P, Germann T and Holian B;2000 Phys. Rev. E 63 016121
[23] Liu L, Liu Y, Zybin S V, Sun H and Goddard W A;2011 J. Phys. Chem. A 115 11016
[24] van-Duin A C T, Dasgupta S, Lorant F and Goddard W A;2001 J. Phys. Chem. A 105 9396
[25] Bourasseau E, Dubois V, Desbiens N and Maillet J B;2007 J. Chem. Phys. 127 084513
[26] Seifert G;2007 J. Phys. Chem. A 111 5609
[27] Aradi B, Hourahine B and Frauenheim T;2007 J. Phys. Chem. A 111 5678
[28] Elstner M;2006 Theor. Chem. Acc. 116 316
[29] Lysne P C;1973 J. Chem. Phys. 59 6512
[30] Liu H, Zhao J J, Ji G F, Gong Z Z and Wei D Q;2006 Physica B: Conden. Matter 382 334
[31] Sorescu D C, Rice B M and Thompson D L;2001 J. Phys. Chem. A 105 9336
[32] Guo F, Cheng X L and Zhang H;2012 J. Phys. Chem. A 116 3514
[33] Humphrey W, Dalke A and Schulten K;1996 J. Molecular Graph. 14 33
[34] Marsh S P 1980 LASL Shock Hugoniot Data (London: University of California Press) p. 615
[35] Rom N, Zybin S V, van Duin A C T, Goddard W A, Zeiri Y, Katz G and Kosloff R;2011 J. Phys. Chem. A 115 10181
[36] Qi T T, Bauschlicher Jr C W, Lawson J W, Desai T G and Reed E J;2013 J. Phys. Chem. A 117 11115
[37] Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z and Zhang C Y;2013 J. Phys. Chem. C 117 24368
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!