|
|
Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+ |
Qin Bo-Ya (秦博雅)a, Wang Pei-Jie (王培杰)b, He Feng (何峰)c |
a Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China; b Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China; c Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract The photoelectron momentum distribution of H2+ in circularly polarized laser fields is studied based on classical trajectory calculations. We screen Coulomb potentials at different radii, and trace trajectories of an ensemble of electrons in such screened Coulomb potentials and circularly polarized laser fields. Simulations show that electron trajectories are bent by Coulomb fields, resulting in the laser-intensity-dependent drift of photoelectron momentum distributions in the laser polarization plane. This study intuitively explains how Coulomb potentials modify photoelectron momenta.
|
Received: 11 January 2015
Revised: 25 May 2015
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
34.80.Qb
|
(Laser-modified scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104180, 11175120, 11121504, and 11322438) and the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 131010). |
Corresponding Authors:
He Feng
E-mail: fhe@sjtu.edu.cn
|
Cite this article:
Qin Bo-Ya (秦博雅), Wang Pei-Jie (王培杰), He Feng (何峰) Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+ 2015 Chin. Phys. B 24 114208
|
[1] |
Krausz F and Ivanov M;2009 Rev. Mod. Phys. 81 163
|
[2] |
Keldysh L V 1965 Sov. Phys. JETP 20 1307
|
[3] |
Becker W, Liu X, Ho P J and Eberly J H;1999 Rev. Mod. Phys. 84 1011
|
[4] |
Krause J L, Schafer K J and Kulander K C;1992 Phys. Rev. Lett. 68 3535
|
[5] |
Corkum P B;1993 Phys. Rev. Lett. 71 1994
|
[6] |
Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou Ph, Muller H G and Agostini P;2001 Science 292 1689
|
[7] |
Lein M J;2007 Phys. B: At. Mol. Opt. Phys. 40 R135
|
[8] |
Lin C D, Le A T, Chen Z J, Morishita T and Lucchese R;2010 J.Phys. B 43 122001
|
[9] |
Becker A and Faisal F H M 1995 J. Phys. B: At. Mol. Opt. Phys. 29 L197
|
[10] |
He F, Ruiz C and Becker A;2007 Phys. Rev. A 75 053407
|
[11] |
Yang W, Sheng Z, Feng X, Wu M, Chen Z and Song X;2014 Opt. Express 22 2519
|
[12] |
Ho P J, Panfili R, Haan S L and Eberly J H;2005 Phys. Rev. Lett. 94 093002
|
[13] |
Mauger F, Chandre C and Uzer T 2010 Phys. Rev. Lett. 105 083002
|
[14] |
Zhang L, Xie X, Roither S, Zhou Y, Lu P, Kartashov D, Schöffler M, Shafir D, Corkum P B, Baltuska A, Staudte A and KitzlerM2014 Phys. Rev. Lett. 112 193002
|
[15] |
Liu C P and Hatsagortsyan K Z;2010 Phys. Rev. Lett. 105 113003
|
[16] |
Li M, Geng J, Liu H, Deng Y, Wu C, Peng L, Gong Q and Liu Y;2014 Phys. Rev. Lett. 112 113002
|
[17] |
Wang X, Tian J and Eberly J H;2013 Phys. Rev. Lett. 110 243001
|
[18] |
Magrakvelidze M, He F, De S, Bocharova I, Ray D, Thumm U and Litvinyuk I V;2009 Phys. Rev. A 79 033408
|
[19] |
Odenweller M, Takemoto N, Vredenborg A, Cole K, Pahl K, Titze J, Schmidt L P H, Jahnke T, Dörner R and Becker A;2011 Phys. Rev. Lett. 107 143004
|
[20] |
Pfeiffer A N, Cirelli C, Landsman A S, Smolarski M, Dimitrovski D, Madsen L B and Keller U;2012 Phys. Rev. Lett. 109 083002
|
[21] |
Li M, Liu Y Q, Liu H, Ning Q C, Fu L B, Liu J, Deng Y K, Wu C Y, Peng L Y and Gong Q H;2013 Phys. Rev. Lett. 111 023006
|
[22] |
Shafir D, Soifer H, Vozzi C, Johnson A S, Hartung A, Dube Z, Villeneuve D M, Corkum P B, Dudovich N and Staudte A;2013 Phys. Rev. Lett. 111 023005
|
[23] |
Kamor A, Mauger F, Chandre C and Uzer T;2013 Phys. Rev. Lett. 110 253002
|
[24] |
Huang C, Li Z, Zhou Y, Tang Q, Liao Q and Lu P;2012 Opt. Express 20 11700
|
[25] |
Doblhoff-Dier K, Dimitriou K I, Staudte A and Gräfe S.;2013 Phys. Rev. A 88 033411
|
[26] |
Keitel C H and Knight P L;1995 Phys. Rev. A 51 1420
|
[27] |
Liu C, Kohler M C, Hatsagortsyan K Z, Müller C and Keitel C H;2009 New J. Phys. 11 105045
|
[28] |
Brabec T, Ivanov M Y and Corkum P B;1996 Phys. Rev. A 54 R2551
|
[29] |
Liu C and Hatsagortsyan K Z;2012 Phys. Rev. A 85 023413
|
[30] |
Xie X, Roither S, Gräfe S, Kartashov D, Persson E, Lemell C, Zhang L, Schöffler M S, Baltuška A, Burgdörfer J and Kitzier M;2013 New J. Phys. 15 043050
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|