|
|
Control of electron localization in the dissociation of H2+ and its isotopes with a THz pulse |
Jia Zheng-Mao (贾正茂)a, Zeng Zhi-Nan (曾志男)a, Li Ru-Xin (李儒新)a, Xu Zhi-Zhan (徐至展)a, Deng Yun-Pei (邓蕴沛)b |
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany |
|
|
Abstract The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion (H2+) and its isotopes (HD+ and HT+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.
|
Received: 24 June 2014
Revised: 22 August 2014
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 60921004, 11134010, 11222439, 11227902, and 61108012) and the National Basic Research Program of China (Grant No. 2011CB808103). |
Corresponding Authors:
Zeng Zhi-Nan
E-mail: zhinan_zeng@mail.siom.ac.cn
|
Cite this article:
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展), Deng Yun-Pei (邓蕴沛) Control of electron localization in the dissociation of H2+ and its isotopes with a THz pulse 2015 Chin. Phys. B 24 013204
|
[1] |
Zewail A H 2000 J. Phys. Chem. A 104 5660
|
[2] |
Babrec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[3] |
Lindner F, Schätzel M G, Walther H, Baltuška A, Goulielmakis E, Krausz F, Milošević D B, Bauer D, Becker W and Paulus G G 2005 Phys. Rev. Lett. 95 040401
|
[4] |
Roudnev V, Esry B D and Ben Itzhak I 2004 Phys. Rev. Lett. 93 163601
|
[5] |
Kling M F, Siedschlag Ch, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F and Vrakking M J J 2006 Science 312 246
|
[6] |
Chelkowski S, Yudin G L and Bandrauk A D 2006 J. Phys. B 39 S409
|
[7] |
Znakovskaya I, Hoff P von den, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking M J J, Kienberger R, Krausz F, de Vivie-Riedle R and Kling M F 2012 Phys. Rev. Lett. 108 063002
|
[8] |
Geppert D, vonden Hoff P and de Vivie-Riedle R 2008 J. Phys. B: At. Mol. Opt. Phys. 41 074006
|
[9] |
Roudnev V and Esry B D 2007 Phys. Rev. Lett. 99 220406
|
[10] |
Sheehy B, Walker B and DiMauro L F 1995 Phys. Rev. Lett. 74 4799
|
[11] |
Charron E, Suzor A G and Mies F H 1993 Phys. Rev. Lett. 71 692
|
[12] |
Lefebvre C, Nguyen-Dang T T and Atabek O 2007 Phys. Rev. A 75 023404
|
[13] |
He F, Camilo R and Andreas B 2007 Phys. Rev. Lett. 99 083002
|
[14] |
He F, Andreas B and Uwe T 2008 Phys. Rev. Lett. 101 213002
|
[15] |
He F 2012 Phys. Rev. A 86 063415
|
[16] |
Liu K L, Zhang Q B and Lu P X 2012 Phys. Rev. A 86 033410
|
[17] |
Jia Z M, Zeng Z N, Li R X, Xu Z Z and Deng Y P 2014 Phys. Rev. A 89 023419
|
[18] |
Jia Z M, Zeng Z N, Li R X and Xu Z Z 2014 Chin. Phys. B 23 083201
|
[19] |
Hirori H, Doi A, Blanchard F and Tanaka K 2011 Appl. Phys. Lett. 98 091106
|
[20] |
Alexander S, Alfred L and Rupert H 2008 Opt. Lett. 33 2767
|
[21] |
Christoph P H, Clemens R, Carlo V and Fernando A 2011 Appl. Phys. Lett. 99 161116
|
[22] |
Xie X, Dai J M and Zhang X C 2006 Phys. Rev. Lett. 96 075005
|
[23] |
Bai Y, Song L W, Xu R J, Li C, Peng L, Zeng Z N, Zhang Z X, Lu H H, Li R X and Xu Z Z 2012 Phys. Rev. Lett. 108 255004
|
[24] |
Wu J, Tong Y Q, Li M, Pan H F and Zeng H P 2010 Phys. Rev. A 82 053416
|
[25] |
Znakovskaya I, Hoff P von den, Zherebtsov S, Wirth A, Herrwerth O, Vrakking M J J, Vivie-Riedle R de and Kling M F 2009 Phys. Rev. Lett. 103 103002
|
[26] |
Zheng Y H, Zeng Z N, Li R X and Xu Z Z 2012 Phys. Rev. A 85 023410
|
[27] |
Szczepan C, André D B, André S and Paul B C 2007 Phys. Rev. A 76 013405
|
[28] |
Zeng Z N, Li R X, Yu W and Xu Z Z 2003 Phys. Rev. A 67 013815
|
[29] |
Wang Y S and Xu Z Z 2000 Chin. Phys. Lett. 17 491
|
[30] |
Zeng Z N, Li R X, Yu W and Xu Z Z 2002 Chin. Phys. Lett. 19 1112
|
[31] |
Liu K L, Hong W Y, Zhang Q B and Lu P X 2011 Opt. Exp. 27 19
|
[32] |
Sharly F, Zhou Y, Robert W F and Keith A N 2011 Phys. Rev. Lett. 107 163603
|
[33] |
Kling M F, Siedschlag Ch, Znakovskaya I, Verhoef A J, Zherebtsov S, Krausz F, Lezius M and Vrakking M J J 2008 Molecular Physics 106 455
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|