Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104203    DOI: 10.1088/1674-1056/27/10/104203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunneling exits of H2+ in strong laser fields

Zhao-Han Zhang(张兆涵)1, Feng He(何峰)1,2
1 Key Laboratory for Laser Plasmas(Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  

Different from atoms, the multicenter of the Coulombic potentials in molecules makes the tunneling ionization complex, and the electron tunnels out the laser-dressed Coulomb potential with a complex structure. We study tunneling exits of H2+ at large internuclear distance in strong laser fields by numerically simulating the time-dependent Schrödinger equation plus a classical backward propagation of the ionized wave packet. This study strengthens the understanding of molecular tunneling ionization in strong laser fields.

Keywords:  ultrafast      tunneling      laser      hydrogen molecular ion  
Received:  11 April 2018      Revised:  28 May 2018      Accepted manuscript online: 
PACS:  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  82.30.Lp (Decomposition reactions (pyrolysis, dissociation, and fragmentation))  
Fund: 

Project supported by National Natural Science Foundation of China (Grant Nos. 11574205, 11327902, and 11421064), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-02-E00034).

Corresponding Authors:  Feng He     E-mail:  fhe@sjtu.edu.cn

Cite this article: 

Zhao-Han Zhang(张兆涵), Feng He(何峰) Tunneling exits of H2+ in strong laser fields 2018 Chin. Phys. B 27 104203

[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Tong Y, Jiang W C, Wu P and Peng L Y 2016 Chin. Phys. B 25 073202
[3] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[4] Corkum P B and Krausz F 2007 Nat. Phys. 3 381
[5] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[6] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
[7] Delone N B and Krainov V P 1991 J. Opt. Soc. Am. B 8 1207
[8] Perelomov A M and Popov V S 1967 Sov. Phys. JETP 25 336
[9] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402
[10] Geng J W, Xiong W H, Xiao X R, Peng L Y and Gong Q H 2015 Phys. Rev. Lett. 115 193001
[11] Li M, Geng J W, Liu H, Deng Y K, Wu C Y, Peng L Y, Gong Q H and Liu Y Q 2014 Phys. Rev. Lett. 112 113002
[12] Ni H C, Saalmann Ulf and Rost J M 2016 Phys. Rev. Lett. 117 023002
[13] Ni H C, Saalmann Ulf and Rost J M 2018 Phys. Rev. A 97 013426
[14] Wang J P and He F 2017 Phys. Rev. A 95 043420
[15] He P L, Takemoto N and He F 2015 Phys. Rev. A 91 063413
[16] Lao D, He P L and He F 2016 Phys. Rev. A 93 063403
[17] Uiberacker M, Uphues Th, Schultze M, et al. 2007 Nature 466 627
[18] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511
[19] Yu Z Q, Yang W J and He F 2016 Acta Phys. Sin. 65 204202 (in Chinese)
[20] Kosloff R and Kosloff D 1986 J. Comput. Phys. 63 363
[21] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes (Cambridge:Cambridge University Press)
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[4] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[7] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[8] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[9] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[10] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[11] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[12] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[13] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[14] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[15] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
No Suggested Reading articles found!