Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088702    DOI: 10.1088/1674-1056/24/8/088702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Stability of focal adhesion enhanced by its inner force fluctuation

Mao Zhi-Xiu (毛志秀), Chen Xiao-Feng (陈笑风), Chen Bin (陈彬)
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
Abstract  

Cells actively sense and respond to mechanical signals from the extracellular matrix through focal adhesions. By representing a single focal adhesion as a cluster of slip bonds, it has been demonstrated that the cluster often became unstable under fluctuated forces. However, an unusual case was also reported, where the stability of the cluster might be substantially enhanced by a fluctuated force with a relatively low fluctuation frequency and high fluctuation amplitude. Such an observation cannot be explained by the conventional fracture theory of fatigue. Here, we intensively investigate this intriguing observation by carrying out systematic parametric studies. Our intensive simulation results indicate that stability enhancement of this kind is in fact quite robust, which can be affected by the stochastic features of a single bond and the profile of the fluctuated forces such as the average value of bond force. We then suggest that the fluctuation of traction force within a focal adhesion might enhance its stability in a certain way.

Keywords:  focal adhesion      slip bonds      stability      fluctuated forces  
Received:  22 January 2015      Revised:  27 March 2015      Accepted manuscript online: 
PACS:  87.17.Rt (Cell adhesion and cell mechanics)  
  87.15.km (Protein-protein interactions)  
  87.15.La (Mechanical properties)  
  87.15.Ya (Fluctuations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11372279).

Corresponding Authors:  Chen Xiao-Feng, Chen Bin     E-mail:  chenxiaofeng@zju.edu.cn;chenb6@zju.edu.cn

Cite this article: 

Mao Zhi-Xiu (毛志秀), Chen Xiao-Feng (陈笑风), Chen Bin (陈彬) Stability of focal adhesion enhanced by its inner force fluctuation 2015 Chin. Phys. B 24 088702

[1] Zaidel-Bar R, Itzkovitz S, Maáyan A, Iyengar R and Geiger B 2007 Nat. Cell Biol. 9 858
[2] Polte T R, Eichler G S, Wang N and Ingber D E 2004 American Journal of Physiology-Cell Physiology 286 C518
[3] Geiger B and Bershadsky A 2001 Curr. Opin. Cell Biol. 13 584
[4] Balaban N Q, Schwarz U S, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A and Addadi L 2001 Nat. Cell Biol. 3 466
[5] Riveline D, Zamir E, Balaban N Q, Schwarz U S, Ishizaki T, Narumiya S, Kam Z, Geiger B and Bershadsky A D 2001 J. Cell Biol. 153 1175
[6] Plotnikov S V, Pasapera A M, Sabass B and Waterman C M 2012 Cell 151 1513
[7] Arampatzis A, Karamanidis K and Albracht K 2007 J. Exp. Biol. 210 2743
[8] Neidlinger-Wilke C, Wilke H J and Claes L 1994 J. Orthop. Res. 12 70
[9] Dartsch P and Betz E 1989 Basic Res. Cardiol. 84 268
[10] Hayakawa K, Sato N and Obinata T 2001 Exp. Cell Res. 268 104
[11] Jungbauer S, Gao H, Spatz J P and Kemkemer R 2008 Biophys. J. 95 3470
[12] Liu B, Qu M J, Qin K R, Li H, Li Z K, Shen B R and Jiang Z L 2008 Biophys. J. 94 1497
[13] Kaspar D, Seidl W, Neidlinger-Wilke C, Beck A, Claes L and Ignatius A 2002 J. Biomech. 35 873
[14] Wang J H C, Goldschmidt-Clermont P, Wille J and Yin F C P 2001 J. Biomech. 34 1563
[15] Dartsch P, Hämmerle H and Betz E 1986 Cells Tissues Organs 125 108
[16] Kanda K and Matsuda T 1992 Cell Transplant. 2 475
[17] Wang H, Ip W, Boissy R and Grood E S 1995 J. Biomech. 28 1543
[18] Iba T and Sumpio B E 1991 Microvasc. Res. 42 245
[19] Buck R C 1980 Exp. Cell Res. 127 470
[20] Neidlinger-Wilke C, Grood E, Wang J C, Brand R and Claes L 2001 J. Orthop. Res. 19 286
[21] Chen X and Chen B 2014 J. Appl. Mech. 81 111002
[22] Paris P and Erdogan F 1963 J. Fluids Eng. 85 528
[23] Chen B, Kemkemer R, Deibler M, Spatz J and Gao H 2012 PloS One 7 e48346
[24] Bell G I 1978 Science 200 618
[25] Kong D, Ji B and Dai L 2008 Biophys. J. 95 4034
[26] Lawrence M B and Springer T A 1991 Cell 65 859
[27] Rinko L J, Lawrence M B and Guilford W H 2004 Biophys. J. 86 544
[28] Prados A, Brey J and Sánchez-Rey B 1997 J. Stat. Phys. 89 709
[29] Deguchi S, Ohashi T and Sato M 2006 J. Biomech. 39 2603
[30] Erdmann T and Schwarz U S 2006 Biophys. J. 91 L60
[31] Lake G and Thomas A 1967 Proc. R. Soc. Lond. Ser. A 300 108
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!