Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070305    DOI: 10.1088/1674-1056/24/7/070305
GENERAL Prev   Next  

Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method

Fan Hong-Yi (范洪义), Lou Sen-Yue (楼森岳)
Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  Based on the operator Hermite polynomials method (OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with some applications. As a by-product, we derive a summation formula involving both Stirling number and Hermite polynomials.
Keywords:  operator Hermite polynomials method (OHPM)      Stirling numbers  
Received:  10 January 2015      Revised:  05 February 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175113).
Corresponding Authors:  Fan Hong-Yi     E-mail:  fhym@ustc.edu.cn

Cite this article: 

Fan Hong-Yi (范洪义), Lou Sen-Yue (楼森岳) Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method 2015 Chin. Phys. B 24 070305

[1] Abramowitz M and Stegun I 1972 Stirling Numbers of the First Kind, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover) p. 824
[2] Fan H Y, Ou-Yang J and Jiang Z H 2006 Commun. Theor. Phys. 45 49
[3] Fan H Y and Jiang N Q 2010 Commun. Theor. Phys. 54 651
[4] Fan H Y and Zhou J 2012 Sci. China: Phys. Mech. Astron. 55 605
[5] Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301
[6] Fan H Y, Zhang P F and Wang Z 2014 Chin. Phys. B
[7] Lu H L and Fan H Y 2007 Commun. Theor. Phys. 47 1024
[8] Fan H Y and Fan Y 2000 Commun. Theor. Phys. 34 149
[9] Fan H Y 2004 Commun. Theor. Phys. 42 339
[10] Fan H Y, Lou S Y, Pan X Y and Da C 2013 Acta Phys. Sin. 62 240301 (in Chinese)
[11] Fan H Y, Lou S Y, Pan X Y and Da C 2014 Acta Phys. Sin. 63 110304 (in Chinese)
[12] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[1] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[2] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!