Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060701    DOI: 10.1088/1674-1056/26/6/060701
GENERAL Prev   Next  

Anisotropic total variation minimization approach in in-line phase-contrast tomography and its application to correction of ring artifacts

Dong-Jiang Ji(冀东江)1,2, Gang-Rong Qu(渠刚荣)1,3, Chun-Hong Hu(胡春红)4, Bao-Dong Liu(刘宝东)5,6,7, Jian-Bo Jian(简建波)8, Xiao-Kun Guo(郭晓坤)9
1 School of Science, Beijing Jiaotong University, Beijing 100044, China;
2 School of Science, Tianjin University of Technology and Education, Tianjin 300222, China;
3 Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China;
4 College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China;
5 Division of Nuclear Technology and Applications, Institute of High Energy Physics(IHEP), Chinese Academy of Sciences(CAS), Beijing 100049, China;
6 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China;
7 University of Chinese Academy of Sciences, Beijing 100049, China;
8 Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China;
9 The Second Hospital of Tianjin Medical University, Tianjin 300070, China
Abstract  In-line phase-contrast computed tomography (IL-PC-CT) imaging is a new physical and biochemical imaging method. IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation (TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods:a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.
Keywords:  SART      anisotropic TV      in-line phase-contrast  
Received:  05 December 2016      Revised:  15 February 2017      Accepted manuscript online: 
PACS:  07.05.Pj (Image processing)  
  07.85.Qe (Synchrotron radiation instrumentation)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671004, 61271012, 81371549, 81671683, and 11501415), the Natural Science Foundation of Tianjin City, China (Grant No. 16JCYBJC28600), the WBE Liver Fibrosis Foundation of China (Grant No. CFHPC20131033), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201410), the Foundation of Tianjin University of Technology and Education (Grant Nos. KJ11-22 and J10011060321), SRF for ROCS, SEM, and the IHEP-CAS Scientific Research Foundation (Grant No. 2013IHEPYJRC801).
Corresponding Authors:  Gang-Rong Qu     E-mail:  grqu@bjtu.edu.cn

Cite this article: 

Dong-Jiang Ji(冀东江), Gang-Rong Qu(渠刚荣), Chun-Hong Hu(胡春红), Bao-Dong Liu(刘宝东), Jian-Bo Jian(简建波), Xiao-Kun Guo(郭晓坤) Anisotropic total variation minimization approach in in-line phase-contrast tomography and its application to correction of ring artifacts 2017 Chin. Phys. B 26 060701

[1] Wang L, Li X, Wu M, Zhang L and Luo S Q 2013 BioMedical Engineering Online 12 1
[2] Boin M and Haibel A 2006 Opt. Express 14 12071
[3] Herman G T and Brouw W N 1980 Image Reconstruction from Projections-the Fundamentals of Computerized Tomography (New York: Academic Press)
[4] Davis R and Elliott J C 1997 Nucl. Instrum. Methods Phys. Res. A 394 157
[5] Gorner W, Hentschel M P, Muller B R, Riesemeier H, Krumrey M, Ulm G, Diete W, Klein U and Frahm R 2001 Nucl. Instrum. Methods Phys. Res. A 467 703
[6] Ketcham R A 2006 Proceedings of SPIE-The International Society for Optical Engineering 07 6318
[7] Münch B, Trtik P, Marone F and Stampanoni M 2009 Opt. express 17 8567
[8] Sijbers J and Postnov A 2004 Phys. Med. Biol. 49 147
[9] Prell D and Kyriakou YKalender W A 2009 Phys. Med. Biol. 54 3881
[10] Zhang H M, Wang L Y, Yan B, Li L, Xi X Q and Liu Y J 2013 Chin. Phys. B 22 078701
[11] Fang S and Guo H2014 Chin. Phys. B 23 057401
[12] Lin M B, Zhao C X, Yu X D, Yu F S, Yang T Y and Yan K2014 Acta Phys. Sin. 63 138701 (in Chinese)
[13] Gu Y F, Yan B, Li L, Wei F, Han Y and Chen J 2014 Acta Phys. Sin. 63 018701 (in Chinese)
[14] Laroque S J, Sidky E Y and Pan X C 2008 J. Opt. Soc. Am. A 25 1772
[15] Li S P, Wang L Y, Yan B, Li L and Liu Y J 2012 Chin. Phys. B 21 108703
[16] Kostenko A, Batenburg K J, King A, Offerman S E and vanVliet L J 2013 Opt. Express 21 12185
[17] Chen Z Q, Jin X, Li L and Wang G 2013 Phys. Med. Biol. 58 2119
[18] Andersen H and Kak A C 1984 Ultrasonic imaging 6 81
[19] Wang D, Zeng X J and Keane J A 2006 Danyluk Et 15 92
[20] Rudin, Leonid I, Osher S and Fatemi E 1992 Physica D: Nonlinear Phenomena 60 259
[21] Esedoglu S and Osher S J 2004 Commun. Pure Appl. Math. 57 1609
[22] Lou Y, Zeng T, Osher S and Xin J 2015 SIAM J. Imag. Sci. 8 1798
[23] Torres-Forné A, Marquina A, Font J A and Ibánez J M 2016 arXiv: 1602.06833[astro-ph.IM]
[24] Kang R R, Qu G R and Wang B 2016 Circuits Systems Signal Process 35 3380
[25] Vandeghinste B, Goossens B, Van H R, Vanhove C, Pizurica A, Vandenberghe S and Staelens S 2013 IEEE Trans. Nucl. Sci. 60 3305
[26] Choksi R, van Gennip Y and Oberman A 2011 Inverse Problems and Imaging 5 591
[27] Boyd S, Parikh N, Chu E, Peleato B and Eckstein J 2011 Foundations and Trends in Machine Learning 3 1
[28] Jian J, Yang H, Zhao X, Xuan R, Zhang Y, Li D and Hu C 2013 J. Synch. Radiat. 23 600
[29] Parikh N and Boyd S 2013 Foundations and Trends in Optimization 1 123
[30] Gao H 2016 Phys. Med. Biol. 61 7187
[31] Liu L K, Chan S and Nguyen T 2015 IEEE Trans. Image Process. 24 3905
[32] Ng M K, Chan R H and Tang W C 1999 SIAM J. Sci. Comput. 21 851
[33] Li C 2009 "An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing", Ph. D. dissertation (Rice University)
[34] Raven C 1998 Rev. Sci. Instrum. 69 2978
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[3] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[4] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
[7] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[8] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[9] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[10] Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes
Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅). Chin. Phys. B, 2018, 27(8): 080701.
[11] Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light
Xi-Hao Chen(陈希浩), Ling Yan(燕玲), Wei Wu(吴炜), Shao-Ying Meng(孟少英), Ling-An Wu(吴令安), Zhi-Bin Sun(孙志斌), Chao Wang(王超), Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2017, 26(6): 060702.
[12] Third-order optical intensity correlation measurements of pseudo-thermal light
Chen Xi-Hao (陈希浩), Wu Wei (吴炜), Meng Shao-Ying (孟少英), Li Ming-Fei (李明飞). Chin. Phys. B, 2014, 23(9): 090701.
[13] Modulation of electroencephalograph activities by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis
Yi Guo-Sheng (伊国胜), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Han Chun-Xiao (韩春晓 ). Chin. Phys. B, 2013, 22(2): 028703.
[14] Modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case studying
Yi Guo-Sheng (伊国胜), Wang Jiang (王江), Han Chun-Xiao (韩春晓), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Li Nuo (李诺). Chin. Phys. B, 2013, 22(2): 028702.
[15] An effective fractal image compression algorithm based on plane fitting
Wang Xing-Yuan (王兴元), Guo Xing (国兴), Zhang Dan-Dan (张丹丹). Chin. Phys. B, 2012, 21(9): 090507.
No Suggested Reading articles found!