Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 065201    DOI: 10.1088/1674-1056/24/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A novel simulation method for positive corona current pulses

Liu Yang (刘阳), Cui Xiang (崔翔), Lu Tie-Bing (卢铁兵), Li Xue-Bao (李学宝), Wang Zhen-Guo (王振国), Xiang Yu (向宇), Wang Xiao-Bo (王小波)
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University, Beijing 102206, China
Abstract  A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume-based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.
Keywords:  positive corona      corona current pulses      control-volume-based finite element method      photoionization  
Received:  19 October 2014      Revised:  01 January 2015      Accepted manuscript online: 
PACS:  52.30.-q (Plasma dynamics and flow)  
  52.80.Hc (Glow; corona)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB209402), the National Natural Science Foundation of China (Grant No. 51177041), and the Fundamental Research Funds for the Central Universities, China (Grant No. 12QX01).
Corresponding Authors:  Liu Yang     E-mail:  liuyangwuh520@sina.com
About author:  52.30.-q; 52.80.Hc; 07.05.Tp

Cite this article: 

Liu Yang (刘阳), Cui Xiang (崔翔), Lu Tie-Bing (卢铁兵), Li Xue-Bao (李学宝), Wang Zhen-Guo (王振国), Xiang Yu (向宇), Wang Xiao-Bo (王小波) A novel simulation method for positive corona current pulses 2015 Chin. Phys. B 24 065201

[1] Zhen Y Z, Cui X, Lu T B, Zhou X X and Luo Z N 2012 IEEE Trans. Magn. 48 743
[2] Zhou X X, Cui X, Lu T B, Liu Y, Li X B, He J M, Bai R and Zhen Y Z 2013 IEEE Trans. Power Del. 28 1094
[3] Li X B, Cui X, Zhen Y Z, Lu T B, Luo Z N, Fang C and Zhou X X 2012 IEEE Trans. Power Del. 27 2141
[4] Morrow R 1985 Phys. Rev. A 32 1799
[5] Morrow R and Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
[6] Hui J F, Guan Z C, Wang L M and Li Q W 2008 IEEE Trans. Dielect. El. In. 15 382
[7] Georghiou G E, Morrow R and Metaxas A C 2000 J. Phys. D: Appl. Phys. 33 2453
[8] Ducasse O, Papageorghiou L, Eichwald O, Spyrou N and Yousfi M 2007 IEEE Trans. Plasma Sci. 35 1287
[9] Sattari P, Castle G S P and Adamiak K 2010 IEEE Trans. Ind. Appl. 46 1699
[10] Sattari P and Castle G S P 2011 IEEE Trans. Ind. Appl. 47 1935
[11] Yin H, Zhang B, He J L and Zhuang C J 2014 IEEE Trans. Magn. 50 7011604
[12] Nigol O 1964 IEEE Trans. Power App. Syst. 83 524
[13] Liu Y, Cui X, Lu T B, Wang Z G, Li X B, Xiang Y and Wang X B 2014 Phys. Plasmas 21 082108
[14] Baliga B R and Patankar S V 1980 Numer. Heat Transfer 3 393
[15] Luque A, Ebert U, Montijn C and Hundsdorfer 2007 Appl. Phys. Lett. 90 081501
[16] Bourdon A, Pasko V P, Liu N Y, Celestin S, Segur P and Marode E 2007 Plasma Sources Sci. Technol. 16 656
[17] Min W G, Kim H S, Lee S H and Hahn S Y 2000 IEEE Trans. Magn. 36 1280
[18] Maruvada P S 2000 Corona Performance of High-Voltage Transmission Lines (Hertfordshire: Research Studies Press Ltd.) pp. 55-64, 71-75, 77-79
[19] Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z and Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese)
[20] Liu X H, He W, Yang F, Wang H Y, Liao R J and Xiao H G 2012 Chin. Phys. B 21 075201
[21] Wang Y N, Liu Y, Zheng S and Lin G Q 2012 Chin. Phys. B 21 075202
[22] Wu F F, Liao R J, Yang L J, Liu X H, Wang K and Zhou Z 2013 Acta Phys. Sin. 62 115201 (in Chinese)
[23] Liao R J, Liu K L, Wu F F, Yang L J and Zhou Z 2014 High Voltage Eng. 40 965 (in Chinese)
[24] Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2014 Chin. Phys. B 21 075204
[25] Shim J H, Choi S K, Hwang H D, Ha D Y, Ko K C and Kang H B 2002 IEEE Trans. Magn. 38 1181
[1] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[2] Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses
Si-Qi Zhang(张思琪), Qi Zhen(甄琪), Zhi-Jie Yang(杨志杰), Jun Zhang(张军), Ai-Hua Liu(刘爱华), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(4): 043201.
[3] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[4] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[5] Terahertz coherent detection via two-color laser pulses of various frequency ratios
Xin-Yang Gu(顾新杨), Ke-Jia Wang(王可嘉), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松). Chin. Phys. B, 2019, 28(9): 098701.
[6] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[7] Relativistic R-matrix calculations for L-shell photoionization cross sections of C Ⅱ
Lu-You Xie(颉录有), Qian-Qian Man(满倩倩), Jian-Guo Wang(王建国), Yi-Zhi Qu(屈一至), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(8): 083201.
[8] Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII
R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(2): 023102.
[9] Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field
Shao-Hao Cheng(程绍昊), De-Hua Wang(王德华), Zhao-Hang Chen(陈召杭), Qiang Chen(陈强). Chin. Phys. B, 2016, 25(6): 063201.
[10] Spectral energetic properties of the X-ray-boosted photoionization by an intense few-cycle laser
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍). Chin. Phys. B, 2014, 23(7): 074207.
[11] Statistical properties of the photoelectron energy spectrum generated by an intense laser pulse and a continuous X-ray
Ge Yu-Cheng (葛愉成), Ge Xiang-Jie (葛湘洁), He Hai-Ping (何海萍). Chin. Phys. B, 2014, 23(11): 114203.
[12] Imprints of molecular orbitals using photoelectron angular distribution by strong laser pulses of circular polarization
Ren Xiang-He (任向河), Zhang Jing-Tao (张敬涛), Wu Yan (吴艳), Ma Hui (马慧), Xu Yu-Long (许玉龙). Chin. Phys. B, 2013, 22(7): 073304.
[13] X-ray-boosted photoionization for the measurement of an intense laser pulse
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍). Chin. Phys. B, 2013, 22(6): 063201.
[14] Relativistic R-matrix studies of photoionization processes of Ar5+
Li Chuan-Ying (李传莹), Han Xiao-Ying (韩小英), Wang Jian-Guo (王建国), Qu Yi-Zhi (屈一至). Chin. Phys. B, 2013, 22(12): 123201.
[15] Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(10): 103301.
No Suggested Reading articles found!