|
|
Piezoelectricity in K1-xNaxNbO3: First-principles calculation |
Li Qiang (李强), Zhang Rui (张锐), Lv Tian-Quan (吕天全), Zheng Li-Mei (郑立梅) |
Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080, China |
|
|
Abstract The piezoelectric properties of K1-xNaxNbO3 are studied by using first-principles calculations within virtual crystal approximation. To understand the critical factors for the high piezoelectric response in K1-xNaxNbO3, the total energy, piezoelectric coefficient, elastic property, density of state, Born effective charge, and energy barrier on polarization rotation paths are systematically investigated. The morphotropic phase boundary in K1-xNaxNbO3 is predicted to occur at x = 0.521, which is in good agreement with the available experimental data. At the morphotropic phase boundary, the longitudinal piezoelectric coefficient d33 of orthorhombic K0.5Na0.5NbO3 reaches a maximum value. The rotated maximum of d33* is found to be along the 50° direction away from the spontaneous polarization (close to the [001] direction). The moderate bulk and shear modulus are conducive to improving the piezoelectric response. By analyzing the energy barrier on polarization rotation paths, it is found that the polarization rotation of orthorhombic K0.5Na0.5NbO3 becomes easier compared with orthorhombic KNbO3, which proves that the high piezoelectric response is attributed to the flattening of the free energy at compositions close to the morphotropic phase boundary.
|
Received: 15 September 2014
Revised: 08 December 2014
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
77.65.-j
|
(Piezoelectricity and electromechanical effects)
|
|
77.84.Cg
|
(PZT ceramics and other titanates)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632900). |
Corresponding Authors:
Zhang Rui, Lv Tian-Quan
E-mail: ruizhang_ccmst@hit.edu.cn;ltq@hit.edu.cn
|
About author: 31.15.A-; 77.65.-j; 77.84.Cg |
Cite this article:
Li Qiang (李强), Zhang Rui (张锐), Lv Tian-Quan (吕天全), Zheng Li-Mei (郑立梅) Piezoelectricity in K1-xNaxNbO3: First-principles calculation 2015 Chin. Phys. B 24 053101
|
[1] |
Sun E and Cao W 2014 Prog. Mater. Sci. 65 124
|
[2] |
Gao Y, Zhang J, Zong X, Wang C and Li J 2010 J. Appl. Phys. 107 074101
|
[3] |
Guo Y, Kakimoto K I and Ohsato H 2004 Solid State Commun. 129 279
|
[4] |
Hollenstein E, Davis M, Damjanovic D and Setter N 2005 Appl. Phys. Lett. 87 182905
|
[5] |
Shrout T R and Zhang S J 2007 J. Electroceram. 19 113
|
[6] |
Zhang J, Zong X, Wu L, Gao Y, Zheng P and Shao S 2009 Appl. Phys. Lett. 95 022909
|
[7] |
Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M 2004 Nature 432 84
|
[8] |
Zhang S and Li F 2012 J. Appl. Phys. 111 031301
|
[9] |
Wang R, Xie R-J, Hanada K, Matsusaki K, Bando H, Sekiya T and Itoh M 2006 Ferroelectrics 336 39
|
[10] |
Tennery V J and Hang K W 1968 J. Appl. Phys. 39 4749
|
[11] |
Zhang B P, Li J F, Wang K and Zhang H 2006 J. Am. Ceram. Soc. 89 1605
|
[12] |
Jaeger R E and Egerton L 1962 J. Am. Ceram. Soc. 45 209
|
[13] |
Dai Y J, Zhang X W and Chen K P 2009 Appl. Phys. Lett. 94 042905
|
[14] |
Li Q, Huang D H, Cao Q L and Wang F H 2013 Chin. Phys. B 22 037101
|
[15] |
Luo F, Cheng Y, Cai L C and Chen X R 2013 J. Appl. Phys. 113 033517
|
[16] |
Ao B-Y, Shi P, Guo Y and Gao T 2013 Chin. Phys. B 22 037103
|
[17] |
Guo Y, Ai J J, Gao T and Ao B Y 2013 Chin. Phys. B 22 057103
|
[18] |
Hu C, Wang F, Xia C, Zheng Z and Ren W 2011 Mod. Phys. Lett. B 25 333
|
[19] |
Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R and Allan D C Z 2005 Kristallogr. 220 558
|
[20] |
Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R and Cote M 2009 Comput. Phys. Commun. 180 2582
|
[21] |
Gonze X and Lee C 1997 Phys. Rev. B 55 10355
|
[22] |
Hamann D, Wu X, Rabe K M and Vanderbilt D 2005 Phys. Rev. B 71 035117
|
[23] |
Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
|
[24] |
Ramer N J and Rappe A M 2000 Phys. Rev. B 62 R743
|
[25] |
Liu S Y, Shao Q S, Yu D S, Lv Y K, Li D J, Li Y and Cao M S 2013 Chin. Phys. B 22 17702
|
[26] |
Deng Y, Wang R Z, Xu L C, Fang H, Yang X, Yan H and Chu P K 2011 Appl. Phys. A 104 1085
|
[27] |
Haumont R, Dkhil B, Kiat J, Al-Barakaty A, Dammak H and Bellaiche L 2003 Phys. Rev. B 68 014114
|
[28] |
Geneste G, Kiat J M and Malibert C 2008 Phys. Rev. B 77 052106
|
[29] |
Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641
|
[30] |
Wu X, Vanderbilt D and Hamann D 2005 Phys. Rev. B 72 035105
|
[31] |
Wu Z, Cohen R and Singh D 2004 Phys. Rev. B 70 104112
|
[32] |
Shirane G, Newnham R and Pepinsky R 1954 Phys. Rev. 96 581
|
[33] |
Wan L, Nishimatsu T and Beckman S 2012 J. Appl. Phys. 111 104107
|
[34] |
Wiesendanger E 1973 Ferroelectrics 6 263
|
[35] |
Shigemi A and Wada T 2005 Jpn. J. Appl. Phys. 44 8048
|
[36] |
Hewat A 1973 J. Phys. C: Solid State Phys. 6 2559
|
[37] |
Katz L and Megaw H 1967 Acta Cryst. 22 639
|
[38] |
Kalinichev A G, Bass J D, Zha C S, Han P D and Payne D A 1993 J. Appl. Phys. 74 6603
|
[39] |
Günter P 1977 Jpn. J. Appl. Phys. 16 1727
|
[40] |
Jaffe B 2012 Piezoelectric Ceramics, Vol. 3 (Elsevier)
|
[41] |
Nakamura Y, Kawai M, Azuma M and Shimakawa Y 2010 Jpn. J. Appl. Phys. 49 051501
|
[42] |
Hiruma Y, Nagata H and Takenaka T 2008 J. Appl. Phys. 104 124106
|
[43] |
Royles A, Bell A, Jephcoat A, Kleppe A, Milne S and Comyn T 2010 Appl. Phys. Lett. 97 132909
|
[44] |
Kaoru M, Makoto K, Masaki A and Hiroshi F 2010 Jpn. J. Appl. Phys. 49 09ME07
|
[45] |
Davis M, Budimir M, Damjanovic D and Setter N 2007 J. Appl. Phys. 101 054112
|
[46] |
Li F, Zhang S, Xu Z, Wei X, Luo J and Shrout T R 2010 J. Am. Ceram. Soc. 93 2731
|
[47] |
Liu X, Zhang S, Luo J, Shrout T R and Cao W 2010 Appl. Phys. Lett. 96 012907
|
[48] |
Hill R 1963 J. Mech. Phys. Solid. 11 357
|
[49] |
Cohen R E 1992 Nature 358 136
|
[50] |
Kuroiwa Y, Aoyagi S, Sawada A, Harada J, Nishibori E, Takata M and Sakata M 2001 Phys. Rev. Lett. 87 217601
|
[51] |
Shi J, Grinberg I, Wang X and Rappe A M 2014 Phys. Rev. B 89 094105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|