Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 053101    DOI: 10.1088/1674-1056/24/5/053101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Piezoelectricity in K1-xNaxNbO3: First-principles calculation

Li Qiang (李强), Zhang Rui (张锐), Lv Tian-Quan (吕天全), Zheng Li-Mei (郑立梅)
Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080, China
Abstract  The piezoelectric properties of K1-xNaxNbO3 are studied by using first-principles calculations within virtual crystal approximation. To understand the critical factors for the high piezoelectric response in K1-xNaxNbO3, the total energy, piezoelectric coefficient, elastic property, density of state, Born effective charge, and energy barrier on polarization rotation paths are systematically investigated. The morphotropic phase boundary in K1-xNaxNbO3 is predicted to occur at x = 0.521, which is in good agreement with the available experimental data. At the morphotropic phase boundary, the longitudinal piezoelectric coefficient d33 of orthorhombic K0.5Na0.5NbO3 reaches a maximum value. The rotated maximum of d33* is found to be along the 50° direction away from the spontaneous polarization (close to the [001] direction). The moderate bulk and shear modulus are conducive to improving the piezoelectric response. By analyzing the energy barrier on polarization rotation paths, it is found that the polarization rotation of orthorhombic K0.5Na0.5NbO3 becomes easier compared with orthorhombic KNbO3, which proves that the high piezoelectric response is attributed to the flattening of the free energy at compositions close to the morphotropic phase boundary.
Keywords:  first principles      morphotropic phase boundary      piezoelectricity      virtual crystal approximation  
Received:  15 September 2014      Revised:  08 December 2014      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  77.84.Cg (PZT ceramics and other titanates)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632900).
Corresponding Authors:  Zhang Rui, Lv Tian-Quan     E-mail:  ruizhang_ccmst@hit.edu.cn;ltq@hit.edu.cn
About author:  31.15.A-; 77.65.-j; 77.84.Cg

Cite this article: 

Li Qiang (李强), Zhang Rui (张锐), Lv Tian-Quan (吕天全), Zheng Li-Mei (郑立梅) Piezoelectricity in K1-xNaxNbO3: First-principles calculation 2015 Chin. Phys. B 24 053101

[1] Sun E and Cao W 2014 Prog. Mater. Sci. 65 124
[2] Gao Y, Zhang J, Zong X, Wang C and Li J 2010 J. Appl. Phys. 107 074101
[3] Guo Y, Kakimoto K I and Ohsato H 2004 Solid State Commun. 129 279
[4] Hollenstein E, Davis M, Damjanovic D and Setter N 2005 Appl. Phys. Lett. 87 182905
[5] Shrout T R and Zhang S J 2007 J. Electroceram. 19 113
[6] Zhang J, Zong X, Wu L, Gao Y, Zheng P and Shao S 2009 Appl. Phys. Lett. 95 022909
[7] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M 2004 Nature 432 84
[8] Zhang S and Li F 2012 J. Appl. Phys. 111 031301
[9] Wang R, Xie R-J, Hanada K, Matsusaki K, Bando H, Sekiya T and Itoh M 2006 Ferroelectrics 336 39
[10] Tennery V J and Hang K W 1968 J. Appl. Phys. 39 4749
[11] Zhang B P, Li J F, Wang K and Zhang H 2006 J. Am. Ceram. Soc. 89 1605
[12] Jaeger R E and Egerton L 1962 J. Am. Ceram. Soc. 45 209
[13] Dai Y J, Zhang X W and Chen K P 2009 Appl. Phys. Lett. 94 042905
[14] Li Q, Huang D H, Cao Q L and Wang F H 2013 Chin. Phys. B 22 037101
[15] Luo F, Cheng Y, Cai L C and Chen X R 2013 J. Appl. Phys. 113 033517
[16] Ao B-Y, Shi P, Guo Y and Gao T 2013 Chin. Phys. B 22 037103
[17] Guo Y, Ai J J, Gao T and Ao B Y 2013 Chin. Phys. B 22 057103
[18] Hu C, Wang F, Xia C, Zheng Z and Ren W 2011 Mod. Phys. Lett. B 25 333
[19] Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R and Allan D C Z 2005 Kristallogr. 220 558
[20] Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R and Cote M 2009 Comput. Phys. Commun. 180 2582
[21] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[22] Hamann D, Wu X, Rabe K M and Vanderbilt D 2005 Phys. Rev. B 71 035117
[23] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[24] Ramer N J and Rappe A M 2000 Phys. Rev. B 62 R743
[25] Liu S Y, Shao Q S, Yu D S, Lv Y K, Li D J, Li Y and Cao M S 2013 Chin. Phys. B 22 17702
[26] Deng Y, Wang R Z, Xu L C, Fang H, Yang X, Yan H and Chu P K 2011 Appl. Phys. A 104 1085
[27] Haumont R, Dkhil B, Kiat J, Al-Barakaty A, Dammak H and Bellaiche L 2003 Phys. Rev. B 68 014114
[28] Geneste G, Kiat J M and Malibert C 2008 Phys. Rev. B 77 052106
[29] Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641
[30] Wu X, Vanderbilt D and Hamann D 2005 Phys. Rev. B 72 035105
[31] Wu Z, Cohen R and Singh D 2004 Phys. Rev. B 70 104112
[32] Shirane G, Newnham R and Pepinsky R 1954 Phys. Rev. 96 581
[33] Wan L, Nishimatsu T and Beckman S 2012 J. Appl. Phys. 111 104107
[34] Wiesendanger E 1973 Ferroelectrics 6 263
[35] Shigemi A and Wada T 2005 Jpn. J. Appl. Phys. 44 8048
[36] Hewat A 1973 J. Phys. C: Solid State Phys. 6 2559
[37] Katz L and Megaw H 1967 Acta Cryst. 22 639
[38] Kalinichev A G, Bass J D, Zha C S, Han P D and Payne D A 1993 J. Appl. Phys. 74 6603
[39] Günter P 1977 Jpn. J. Appl. Phys. 16 1727
[40] Jaffe B 2012 Piezoelectric Ceramics, Vol. 3 (Elsevier)
[41] Nakamura Y, Kawai M, Azuma M and Shimakawa Y 2010 Jpn. J. Appl. Phys. 49 051501
[42] Hiruma Y, Nagata H and Takenaka T 2008 J. Appl. Phys. 104 124106
[43] Royles A, Bell A, Jephcoat A, Kleppe A, Milne S and Comyn T 2010 Appl. Phys. Lett. 97 132909
[44] Kaoru M, Makoto K, Masaki A and Hiroshi F 2010 Jpn. J. Appl. Phys. 49 09ME07
[45] Davis M, Budimir M, Damjanovic D and Setter N 2007 J. Appl. Phys. 101 054112
[46] Li F, Zhang S, Xu Z, Wei X, Luo J and Shrout T R 2010 J. Am. Ceram. Soc. 93 2731
[47] Liu X, Zhang S, Luo J, Shrout T R and Cao W 2010 Appl. Phys. Lett. 96 012907
[48] Hill R 1963 J. Mech. Phys. Solid. 11 357
[49] Cohen R E 1992 Nature 358 136
[50] Kuroiwa Y, Aoyagi S, Sawada A, Harada J, Nishibori E, Takata M and Sakata M 2001 Phys. Rev. Lett. 87 217601
[51] Shi J, Grinberg I, Wang X and Rappe A M 2014 Phys. Rev. B 89 094105
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[12] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[13] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[14] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[15] First principles study of interactions of oxygen-carbon-vacancy in bcc Fe
Yuan You(由园), Mu-Fu Yan(闫牧夫), Ji-Hong Yan(闫纪红), Gang Sun(孙刚), Chao Wang(王超). Chin. Phys. B, 2019, 28(10): 106102.
No Suggested Reading articles found!