Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050305    DOI: 10.1088/1674-1056/24/5/050305
GENERAL Prev   Next  

One-dimensional lazy quantum walks and occupancy rate

Li Dan (李丹)a b, Michael Mc Gettrickb, Zhang Wei-Wei (张伟伟)a, Zhang Ke-Jia (张可佳)a
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b The De Brun Centre for Computational Algebra, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway
Abstract  

In this paper, we discuss the properties of lazy quantum walks. Our analysis shows that the lazy quantum walks have O(tn) order of the n-th moment of the corresponding probability distribution, which is the same as that for normal quantum walks. The lazy quantum walk with a discrete Fourier transform (DFT) coin operator has a similar probability distribution concentrated interval to that of the normal Hadamard quantum walk. Most importantly, we introduce the concepts of occupancy number and occupancy rate to measure the extent to which the walk has a (relatively) high probability at every position in its range. We conclude that the lazy quantum walks have a higher occupancy rate than other walks such as normal quantum walks, classical walks, and lazy classical walks.

Keywords:  lazy quantum walk      occupancy number      occupancy rate  
Received:  21 October 2014      Revised:  03 December 2014      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  02.30.Nw (Fourier analysis)  
Fund: 

Project of Beijing, China (Grant No. YETP0475 and YETP0477), the BUPT Excellent Ph. D. Students Foundation (Grant Nos. CX201325 and CX201326), and the China Scholarship Council (Grant No. 201306470046).

Corresponding Authors:  Li Dan     E-mail:  lidansusu007@163.com
About author:  03.67.Ac; 03.67.Lx; 02.30.Nw

Cite this article: 

Li Dan (李丹), Michael Mc Gettrick, Zhang Wei-Wei (张伟伟), Zhang Ke-Jia (张可佳) One-dimensional lazy quantum walks and occupancy rate 2015 Chin. Phys. B 24 050305

[1] Venegas-Andraca S E 2012 Quant. Inf. Proc. 11 1015
[2] Reitzner D, Nagaj D and Buzek V 2013 arXiv:quant-ph/1207.7283v2
[3] Ambainis A 2003 arXiv:quant-ph/0311001
[4] Shenvi N, Kempe J and Birgitta W K 2003 Phys. Rev. A 67 052307
[5] Hein B and Tanner G 2010 Phys. Rev. A 82 012326
[6] Berry S D and Wang J B 2010 Phys. Rev. A 82 042333
[7] Tarrataca L and Wichert A 2013 Quant. Inf. Proc. 12 1365
[8] Li D, Zhang J, Guo F Z, Huang W, Wen Q Y and Chen H 2013 Quant. Inf. Proc. 12 1501
[9] Li D, Zhang J, Ma X W, Zhang W W and Wen Q Y 2013 Quant. Inf. Proc. 12 2167
[10] Berry S D and Wang J B 2011 Phys. Rev. A 83 042317
[11] Douglas B L and Wang J B 2008 J. Phys. A 41 075303
[12] Ambainis A, Bach E, Nayak A, Vishwanath A and Watrous J 2011 STOC '01 Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing (New York: ACM) pp. 37-49
[13] Nayak A and Vishwanath A 2000 arXiv:quant-ph/0010117
[14] Chou C I and Ho C L 2014 Chin. Phys. B 23 110302
[15] Li M, Zhang Y S and Guo G C 2013 Chin. Phys. B 22 030310
[16] Xue P and Sanders B C 2012 Phys. Rev. A 85 022307
[17] DiFranco C, McGettrick M and Busch T 2011 Phys. Rev. Lett. 106 080502
[18] DiFranco C, McGettrick M, Machida T and Busch T 2011 Phys. Rev. A 84 042337
[19] Inui N, Konno N and Segawa E 2005 arXiv:quant-ph/0507207v1
[20] Rohde P P, Schreiber A, Stefanak M, Jex I and Silberhorn C 2011 New J. Phys. 13 013001
[21] Mayer K, Tichy M C, Mintert F, Konrad T and Buchleitner A 2011 Phys. Rev. A 83 062307
[22] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
[23] Zhang R, Xu Y Q and Xue P 2015 Chin. Phys. B 24 010303
[24] Childs A M 2010 Commun. Math. Phys. 294 581
[25] Stefanak M, Bezdekova I and Jex I 2014 arXiv:1405.7146v2
[26] Falkner S and Boettcher S 2014 arXiv:1404.1330v2
[27] Stefanak M, Bezdekova I and Jex I 2012 Eur. Phys. J. D 66 142
[28] Stefanak M, Bezdekova I, Jex I and Barnett S M 2014 arXiv:1309.7835v2
[29] Machida T 2014 arXiv:1404.1522v1
[30] Carneiro I, Loo M, Xu X, Girerd M, Kendon V and Knight P L 2005 New J. Phys. 7 156
[31] Tregenna B, Flanagan W, Maile R and Kendon V 2003 New J. Phys. 5 83
[32] Maloyer O and Kendon V 2007 New J. Phys. 9 87
[33] Annabestani M, Abolhasani M R and Abal G 2010 J. Phys. A 43 075301
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[4] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[5] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[8] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[13] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[14] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[15] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
No Suggested Reading articles found!