Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040502    DOI: 10.1088/1674-1056/24/4/040502
GENERAL Prev   Next  

Principal resonance response of a stochastic elastic impact oscillator under nonlinear delayed state feedback

Huang Dong-Mei (黄冬梅)a b, Xu Wei (徐伟)a, Xie Wen-Xian (谢文贤)a b, Han Qun (韩群)a
a Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China;
b Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
Abstract  

In this paper, the principal resonance response of a stochastically driven elastic impact (EI) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi-valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.

Keywords:  elastic impact system      time delay      frequency island      jump avoidance  
Received:  11 September 2014      Revised:  23 October 2014      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11172233, 11302170, and 11302172).

Corresponding Authors:  Xu Wei     E-mail:  weixu@nwpu.edu.cn

Cite this article: 

Huang Dong-Mei (黄冬梅), Xu Wei (徐伟), Xie Wen-Xian (谢文贤), Han Qun (韩群) Principal resonance response of a stochastic elastic impact oscillator under nonlinear delayed state feedback 2015 Chin. Phys. B 24 040502

[1] Tomlinson G R and Lam J 1984 J. Sound Vib. 96 111
[2] Lin W, Ni Q and Huang Y 2006 J. Sound Vib. 296 1068
[3] Souza S L T, Wiercigroch M, Caldasb I L and Balthazarc J M 2008 Chaos, Solitons and Fractals 38 864
[4] Wang L, Yue X L, Sun C Y and Xu W 2013 Nonlinear Dyn. 71 597
[5] Yin S, Ding S X, Xie X C and Luo H 2014 IEEE Trans. Ind. Electron. 61 6418
[6] Yin S, Zhu X P, and Kaynak O 2014 IEEE Trans. Ind. Electron.
[7] Hu H Y, Dowell E H and Virgin L N 1998 Nonlinear Dyn. 15 311
[8] Hu H Y, Wang Z H 2002 Dynamics of Controlled Mechanical Systems with Delayed Feedback (Berlin/Heidelberg: Springer-Verlag)
[9] Maccari A 2001 Nonlinear Dyn. 26 105
[10] Xu J and Yu P 2004 Int. J. Bifurc. Chaos 14 2777
[11] Nayfeh N A and Baumann W T 2008 Nonlinear Dyn. 53 75
[12] Paola M D and Pirrotta A 2011 Probab. Eng. Mech. 16 43
[13] Jin Y F and Hu H Y 2007 Nonlinear Dyn. 50 213
[14] Zhang H Q, Xu W, Xu Y and Li D X 2009 Physica A 388 3017
[15] Ren H P, Li W C, and Liu D 2010 Chin. Phys. B 19 030511
[16] Tian J and Chen Y 2010 Chin. Phys. Lett. 27 030502
[17] Yang X L and Sun Z K 2010 Int. J. Non-Linear Mech. 45 621
[18] Wang J A 2011 Chin. Phys. B 20 120701
[19] Gu W D, Sun Z Y, Wu X M and Yu C B 2013 Chin. Phys. B 22 080507
[20] Yin S, Wang G and Yang X 2014 Int. J. Syst. Sci. 45 1375
[21] Saha A and Wahi P 2014 Int. J. Non-Linear Mech. 63 60
[22] Gao X and Chen Q 2014 J. Sound Vib. 333 1562
[23] Yin S, Wang G and Karimi H R 2014 Mechatronics 24 298
[24] Yin S, Ding S X, Haghani A, Hao H and Zhang P 2012 J. Process. Control 22 1567
[25] Liu Y, Waters T P and Brennan M J 2005 J. Sound Vib. 280 21
[26] Weding W V 1990 Struct. Saf. 8 13
[27] Schmidt G and Tondl A 1986 Nonlinear Vibrations (Cambridge: Cambridge University Press)
[28] Deshpande S, Mehta S and Jazarv G N 2006 Int. J. Mech. Sci. 48 341
[29] Jazar G N, Houim R, Narimani A and Golnaraghi M F 2006 J. Vib. Control 12 1205
[30] Shinozuka M 1972 J. Sound Vib. 25 111
[31] Zhu W Q 1998 Random Vibration (Beijing: Science Press)
[32] Rong H W, Wang X D, Xu W and Fang T 2008 Acta Phy. Sin. 57 6888 (in Chinese)
[33] Daqaq M F and Vogl G W 2008 Proc. 6th EUROMECH Nonlinear Dynamics Conf., Saint Petersburg, Russia
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[4] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[11] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[12] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[13] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[14] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[15] Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling
Zeng-Qiang Yang(杨增强), Di-Fa Ye(叶地发), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(1): 013301.
No Suggested Reading articles found!