Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 049202    DOI: 10.1088/1674-1056/24/4/049202
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Function projective synchronization between two different complex networks with correlated random disturbances

Jin Yun-Guo (金运国)a, Zhong Shou-Ming (钟守铭)a b, An Na (安娜)c
a School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China;
b Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China;
c School of Mathematics and Systems Science, Beihang University, Beijing 100191, China
Abstract  Although function projective synchronization in complex dynamical networks has been extensively studied in the literature, few papers deal with the problem between two different complex networks with correlated random disturbances. In this paper, we present some novel techniques to analyze the problem of synchronization. A probability approach is introduced to obtain an almost sure synchronization criterion. We also present some efficient approaches to analyze the problem of exponential synchronization. For the problem of synchronization in some complex networks, our approaches not only can replace the LaSalle-type theorem but also allow improvements of existing results in the literature. Finally, some numerical examples are provided to demonstrate the effectiveness of the proposed approaches.
Keywords:  complex networks      random disturbances      synchronization      martingale      Itô      integral  
Received:  28 September 2014      Revised:  19 November 2014      Accepted manuscript online: 
PACS:  92.40.Xx (Irrigation; dams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61273015).
Corresponding Authors:  Jin Yun-Guo, Zhong Shou-Ming     E-mail:  yunguoj@163.com;zhongsm@uestc.edu.cn

Cite this article: 

Jin Yun-Guo (金运国), Zhong Shou-Ming (钟守铭), An Na (安娜) Function projective synchronization between two different complex networks with correlated random disturbances 2015 Chin. Phys. B 24 049202

[1] Du H, Shi P and Lü N 2013 Nonlinear Anal. RWA 14 1182
[2] Dai H, Si G and Zhang Y 2013 Nonlinear Dyn. 74 629
[3] Wang S, Yu Y G, Wang H and Ahmed R 2014 Chin. Phys. B 23 040502
[4] Wu X and Lu H 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3005
[5] Li K Z, He E, Zeng Z R and Chi K T 2013 Chin. Phys. B 22 070504
[6] Chen J R, Jiao L C, Wu J S and Wang X H 2009 Chin. Phys. Lett. 26 060505
[7] Tang H, Chen L, Lu J and Tse C K 2008 Physica A 387 5623
[8] Wang G, Cao J and Lu J 2010 Physica A 389 1480
[9] Sun Y, Shi H, Bakare E A and Meng Q 2014 Nonlinear Dyn. 76 519
[10] Sun Y, Li W and Ruan J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 989
[11] Li C P, Xu C X, Sun W G, Xu J and Kurths J 2009 Chaos 19 013106
[12] Wu X, Zheng W and Zhou J 2009 Chaos 19 013109
[13] Sun W, Chen Z, Lü Y and Chen S 2010 Appl. Math. Comput. 216 2301
[14] Sun W, Chen Z, Lü J and Chen S 2012 Nonlinear Dyn. 69 1751
[15] Wang J, Ma Q, Zeng L and Elouahab M A 2011 Chaos 21 013121
[16] Zheng S and Shao W 2013 Nonlinear Dyn. 73 2343
[17] Wang T, Zhou W and Zhao S 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2097
[18] Zhong D Z, Deng T, Zheng and Guo L 2014 Acta Phys. Sin. 63 070504 (in Chinese)
[19] Wang P and Liu S T 2014 Acta Phys. Sin. 63 060503 (in Chinese)
[20] Ma M L, Min F H, Shao S Y and Huang M Y 2014 Acta Phys. Sin. 63 010507 (in Chinese)
[21] Yang X, Cao J and Lu J 2011 Nonlinear Anal. RWA 12 2252
[22] Lu J and Cao J 2008 Nonlinear Dyn. 53 107
[23] Zou Y Y and Li H H 2014 Chin. Phys. Lett. 31 100501
[24] Qin S, Chen X, Sun W and Zhang J 2014 Physica A 413 230
[25] Chai Y and Chen L Q 2014 Chin. Phys. B 23 030504
[26] Yang D D 2014 Chin. Phys. B 23 010504
[27] Zhou W, Wang T, Mou J and Fang J 2012 J. Frankl. Inst. 349 1267
[28] Wang J and Wu H 2012 Nonlinear Dyn. 67 497
[29] Lu J, Ho D and Wu L 2009 Nonlinearity 22 889
[30] Mao X 1999 J. Math. Anal. Appl. 236 350
[31] Lü J and Cao J 2007 Physica A 382 672
[32] Khalil H 2002 Nonlinear Systems, 2nd edn. (London: Prentice-Hall)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[4] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[5] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[6] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[7] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[8] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[9] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[10] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[11] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[12] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[13] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[14] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[15] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
No Suggested Reading articles found!