Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 043201    DOI: 10.1088/1674-1056/24/4/043201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer

A. Hariri, S. Sarikhani
Laser and Optics Research School, North Kargar Avenue, P. O. Box 11365-8486, Tehran, Iran
Abstract  

Amplified spontaneous emission (ASE), including intensity and bandwidth, in a typical example of BuEH-PPV is calculated. For this purpose, the intensity rate equation is used to explain the reported experimental measurements of a BuEH-PPV sample pumped at different pump intensities from Ip=0.61 MW/cm2 to 5.2 MW/cm2. Both homogeneously and inhomogeneously broadened transition lines along with a model based on the geometrically dependent gain coefficient (GDGC) are examined and it is confirmed that for the reported measurements the homogeneously broadened line is responsible for the light-matter interaction. The calculation explains the frequency spectrum of the ASE output intensity extracted from the sample at different pump intensities, unsaturated and saturated gain coefficients, and ASE bandwidth reduction along the propagation direction. Both analytical and numerical calculations for verifying the GDGC model are presented in this paper. Although the introduced model has shown its potential for explaining the ASE behavior in a specific sample it can be universally used for the ASE study in different active media.

Keywords:  amplified spontaneous emission      bandwidth reduction      polymers      gain coefficient  
Received:  09 July 2014      Revised:  08 November 2014      Accepted manuscript online: 
PACS:  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.-t (Photoionization and excitation)  
Corresponding Authors:  A. Hariri     E-mail:  akbar_hariri@yahoo.com

Cite this article: 

A. Hariri, S. Sarikhani Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer 2015 Chin. Phys. B 24 043201

[1] Peters G I and Allen L 1971 J. Phys. A: Math. Gen. 4 238
[2] Allen L and Peters G I 1971 J. Phys. A: Math. Gen. 4 377
[3] Casperson L W and Yariv A 1972 IEEE J. Quantum Electron. QE-8 80
[4] Casperson L W 1977 J. Appl. Phys. 48 256
[5] Pert G J 1994 J. Opt. Soc. Am. B 11 1425
[6] McGehee M D, Gupta R, Veenstra S, Miller E K, Díaz-García M A and Heeger A J 1998 Phys. Rev. B 58 7035
[7] Park J Y, Srdanov V I, Heeger A J, Lee C H and Park Y W 1999 Synthetic Met. 106 35
[8] Zhang B, Hou Y B, Teng F, Lou Z D, Liu X J, Hu B and Wu W B 2011 Chin. Phys. B 20 054208
[9] Zhang B, Hou Y B, Teng F, Lou Z D, Liu X J, Hu B and Wu W B 2011 Chin. Phys. B 20 077803
[10] Xie W, Li Y, Li F, Shen F and Ma Y 2007 Appl. Phys. Lett. 90 141110
[11] Wang H Y, Dou X M, Ni H Q, Niu Z C and Sun B Q 2014 Acta Phys. Sin. 63 021801 (in Chinese)
[12] Samuel I D W and Turnbull G A 2007 Chem. Rev. 107 1272
[13] Calzado E M, Boj P G and Díaz-García M A 2010 Int. J. Mol. Sci. 11 2546
[14] Svelto O 2010 Principles of lasers, 5th edn. (Berlin: Springer)
[15] Yariv A and Leite R C 1963 J. Appl. Phys. 34 3410
[16] Leonard D A 1965 Appl. Phys. Lett. 7 4
[17] Kühnle G, Teubner U and Szatmári S 1990 Appl. Phys. B 51 71
[18] Hariri A, Jaberi M and Ghoreyshi S 2008 Opt. Commun. 281 3841
[19] Fitzsimmons W A, Anderson L W, Riedhauser C E and Vrtilek J M 1976 IEEE J. Quantum Electron. QE-12 624
[20] Sarikhani S and Hariri A 2010 Opt. Commun. 283 118
[21] Hariri A and Sarikhani S 2011 Opt. Commun. 284 2153
[22] Hariri A and Sarikhani S 2012 Opt. Lett. 37 1127
[23] Hariri A and Sarikhani S 2014 Laser Phys. Lett. 11 015003
[24] Sarikhani S and Hariri A 2013 Opt. Commun. 286 251
[25] Hariri A and Sarikhani S 2014 Opt. Commun. 318 152
[26] Yariv A 1998 Quantum Electronics, 3rd edn. (New York: Wiley)
[27] Fang H H, Chen Q D, Ding R, Yang J, Ma Y G, Wang H Y, Gao B R, Feng J and Sun H B 2010 Opt. Lett. 35 2561
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[3] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[4] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[5] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[6] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[7] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[8] Highly sensitive polymer photodetectors with a wide spectral response range
Mile Gao(高米勒), Wenbin Wang(王文斌), Lingliang Li(李凌亮), Jianli Miao(苗建利), Fujun Zhang(张福俊). Chin. Phys. B, 2017, 26(1): 018201.
[9] Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers
Wei Gu(顾伟), Jia Wei(韦嘉), Yanlei Yu(俞燕蕾). Chin. Phys. B, 2016, 25(9): 096103.
[10] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[11] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
[12] Raman gains of ADP and KDP crystals
Zhou Hai-Liang (周海亮), Zhang Qing-Hua (张清华), Wang Bo (王波), Xu Xin-Guang (许心光), Wang Zheng-Ping (王正平), Sun Xun (孙洵), Zhang Fang (张芳), Zhang Li-Song (张立松), Liu Bao-An (刘宝安), Chai Xiang-Xu (柴向旭). Chin. Phys. B, 2015, 24(4): 044206.
[13] Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry
Yu Bin (于彬), Deng Jian-Hua (邓建华), Wang Zheng (王铮), Li Bao-Hui (李宝会), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(4): 046402.
[14] Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers
Zhao Xu-Liang (赵旭亮), Yue Yuan-Bin (岳远斌), Liu Tong (刘通), Sun Jian (孙健), Wang Xi-Bin (王希斌), Sun Xiao-Qiang (孙小强), Chen Chang-Ming (陈长鸣), Zhang Da-Ming (张大明). Chin. Phys. B, 2015, 24(4): 044101.
[15] Spectroscopic properties of Yb3+-doped TeO2-BaO-BaF2-Nb2O5-based oxyfluoride tellurite glasses
Lin She-Bao (林社宝), Wang Peng-Fei (王鹏飞), She Jiang-Bo (佘江波), Guo Hai-Tao (郭海涛), Xu Shen-Nuo (许慎诺), Yu Cheng-Long (于成龙), Liu Chun-Xiao (刘春晓), Peng Bo (彭波). Chin. Phys. B, 2014, 23(9): 097801.
No Suggested Reading articles found!