Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044101    DOI: 10.1088/1674-1056/24/4/044101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers

Zhao Xu-Liang (赵旭亮)a b, Yue Yuan-Bin (岳远斌)a b, Liu Tong (刘通)a b, Sun Jian (孙健)a b, Wang Xi-Bin (王希斌)a b c, Sun Xiao-Qiang (孙小强)a b c, Chen Chang-Ming (陈长鸣)a b c, Zhang Da-Ming (张大明)a b c
a College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
b State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, China;
c Jilin Provincial Engineering Laboratory on Polymer Planar Lightwave Circuit, Changchun 130012, China
Abstract  A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabricated. The absorption properties, refractive indexes, and surface morphologies of NOA73 film are characterized. The single-mode transmission condition is computed by the effective index method, and the percentage of optical field distributed in EO layer is optimized to be 93.78 %. By means of spin-coating, thermal evaporation, photolithography, and inductively coupled plasma etching, a Mach-Zehnder inverted-rib waveguide EO switch with micro-strip line electrode is fabricated on a silicon substrate. Scanning electron microscope characterization proves the physic-chemical compatibility between NOA73 cladding and DR1/SU-8 core material. The optical transmission loss of the fabricated switch is measured to be 2.5 dB/cm. The rise time and fall time of switching are 3.199 ns and 2.559 ns, respectively. These results indicate that the inverted-rib wave-guide based on UV-curable polymers can effectively reduce the optical transmission loss and improve the time response performance of an EO switch.
Keywords:  electro-optic switch      optical transmission loss      inverted-rib waveguide      poled polymers  
Received:  11 August 2014      Revised:  15 September 2014      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  42.25.-p (Wave optics)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177027, 61107019, 61205032, and 61261130586).
Corresponding Authors:  Sun Xiao-Qiang     E-mail:  sunxq@jlu.edu.cn

Cite this article: 

Zhao Xu-Liang (赵旭亮), Yue Yuan-Bin (岳远斌), Liu Tong (刘通), Sun Jian (孙健), Wang Xi-Bin (王希斌), Sun Xiao-Qiang (孙小强), Chen Chang-Ming (陈长鸣), Zhang Da-Ming (张大明) Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers 2015 Chin. Phys. B 24 044101

[1] Zhang X Y, Lee B, Lin C Y, Wang A X, Hosseini A and Chen R T 2012 IEEE Photon. J. 4 2214
[2] Enami Y, Mathine D, DeRose C T, Norwood R A, Luo J, Jen A K Y and Peyghambarian N 2009 Appl. Phys. Lett. 94 213513
[3] Zhang X Y, Hosseini A, Lin X H, Subbaraman H and Chen R T 2013 IEEE J. Sel. Top. Quantum Electron. 19 3401115
[4] Li J Y, Lu D F and Qiu Z M 2014 Acta Phys. Sin. 63 077801 (in Chinese)
[5] Wen Y, Zhang X X, Huang C Y and Shen J 2011 Acta Phys. Sin. 60 104223 (in Chinese)
[6] Noguchi K, Mitomi O, Kawano K and Yanagibashi M 1993 IEEE Photon. Tech. Lett. 5 52
[7] Enami Y, Derose C T, Mathine D, Loychik C, Greenlee C, Norwood R A, Kim T D, Luo J, Tian Y, Jen A K Y and Peyghambarian N 2007 Nat. Photon. 1 180
[8] Sun J, Zhu G H, Sun X Q, Li T,Gao W N, Zhang D M and Hou A L 2009 Chin. Phys. Lett. 26 024206
[9] Chen C M, Zhang F, Wang H, Sun X Q, Wang F, Cui Z C and Zhang D M 2011 IEEE J. Quantum. Electron. 47 959
[10] Chen J J, Li Z, Zhang J S and Gong Q H 2008 Acta Phys. Sin. 57 5893 (in Chinese)
[11] Lin C Y, Wang A X, Zhang X Y, Lee B S and Chen R T 2012 Proc. SPIE 8258 82580Y
[12] Dalton L R, Lao D, Olbricht B C, Benight S, Bale D H, Davies J A, Ewy T, Hammond S R and Sullivan P A 2010 Opt. Mater. 32 658
[13] Dalton L R 2011 Polymers 3 1325
[14] Dalton L R Sullivan P A and Bale D H 2010 Chem. Rev. 110 22
[15] Dalton L R 2009 Thin Solid Films 518 428
[16] Tian H, Sun W M and Zhang Y D 2013 Acta Phys. Sin. 62 194204 (in Chinese)
[17] Tian H, Zhang Y D, Wang H, Qiu W, Wang N and Yuan P 2008 Acta Phys. Sin. 57 6400 (in Chinese)
[18] Li Y M and Chen B W 2013 Chin. Phys. B 22 124209
[19] Zhang D L, Wu C and Pun E Y B 2010 Chin. Phys. B 19 024214
[20] Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D and Hu X W 2014 Chin. Phys. B 23 044210
[21] Soref R A, Schmidtchen J amd Petermann K 1991 IEEE J. Quantum Electron. 27 1971
[22] Pogossian S P, Vescan L and Vonsovici A 1998 IEEE J. Lightwave Technol. 16 1851
[23] Ma H, Jen A K Y and Dalton L R 2002 Adv. Mater. 14 1339
[24] Zhang X Y, Zhang T, Xue X J, Cui Y P and Wu P Q 2009 J. Opt. A 11 085411
[25] Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D and Yu J Z 2013 Chin. Phys. B 22 114212
[26] Xu X J, Chen S W, Xu H H, Sun Y, Yu Y D, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 3900
[27] Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X and Chen S W 2013 Acta Phys. Sin. 62 194210 (in Chinese)
[28] Yang B, Yang L, Hu R, Sheng Z, Dai D X, Liu Q K and He S L 2009 IEEE J. Lightwave Technol. 27 4091
[29] Chen C M, Sun X Q, Zhang D, Shan Z B, Shin S Y and Zhang D M 2009 Opt. Laser Technol. 41 495
[30] Shao G, Qiu W and Wang W 2010 Microsyst. Technol. 16 1471
[31] Perentos N, Kostovski G and Mitchell A 2005 IEEE Photon. Tech. Lett. 17 2595
[32] Fischbeck G, Moosburger R, Topper M and Petermann K 1996 Electron. Lett. 32 212
[33] Yamada H, Chu T, Ishida S and Arakawa Y 2006 IEEE J. Sel. Top. Quantum Electron. 12 1371
[34] Ma C S, Wang X Y, Zhang H M, Zhang D M, Cui Z C and Liu S Y 2004 Opt. Quantum Electron. 36 759
[35] Zhao Y, Zhang D M, Wang F, Cui Z C, Yi M B, Ma C S, Guo W B and Liu S Y 2004 Opt. Laser Technol. 36 657
[36] Sun X Q, Li X D, Chen C M, Zhang K, Meng J, Wang X B, Yang T F, Zhang D M, Wang F and Xie Z Y 2012 Thin Solid Films 520 5946
[37] Yun B F, Hu G H, Lu C G and Cui Y P 2009 Opt. Commun. 282 1793
[38] McKenna M, Lin E S, Mickelson A R, Dinu A R and Dan J 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 2888
[39] Pliška T, Meier J, Eckau A, Ricci V, Duff A C L, Canva M, Stegeman G I, Raymond P, Kajzar F and Chan K P 2000 Appl. Phys. Lett. 76 265
[40] Li Y M and Cheng B W 2013 Chin Phys. B 22 124209
[41] Zhang X, Li Z Q and Tong K 2014 Acta Phys. Sin. 63 094207 (in Chinese)
[42] Salinas I, Garcés I, Alonso R, Pelayo J and Villuendas F 2005 Opt. Exress 13 564
[43] Li H H, Chen J A and Wang Q K 2010 Chin Phys. B 19 114203
[44] William M Diffey, Rebecca H Trimm, Mark G Temmen and Paul R Ashley 2005 J. Lightwave Technol. 23 1787
[45] Sun L Y, Gao Z Y, Zou D S, Zhang L M, Li T L and Shen G D 2012 Acta Phys. Sin. 61 206801 (in Chinese)
[46] Bora H, Haeng H A, Se H J, Jiyeon Y, Sang Y K, Sun Y P, Sun J K and Yong K K 2014 Macromol. Res. 22 678
[47] Zheng C T, Ma C S, Yan X, Wan X Y and Zhang D M 2009 Opt. Eng. 48 054601
[48] Seo B J, Kim S K, H Fetterman, W Steier, Jin D and Raluca Dinu 2008 J. Phys. Chem. C 112 7953
[49] B Bortnik, Y C Hung, H Tazawa, Seo B J, Luo J D, Alex K. Y. Jen, William H Steier and Harold R Fetterman 2007 IEEE J. Sel. Top. Quantum Electron. 13 104
[1] High-power electro-optic switch technology based on novel transparent ceramic
Xue-Jiao Zhang(张学娇), Qing Ye(叶青), Rong-Hui Qu(瞿荣辉), Hai-wen Cai(蔡海文). Chin. Phys. B, 2016, 25(3): 034202.
[2] Strictly non-blocking 4× 4 silicon electro-optic switch matrix
Zhou Pei-Ji (周培基), Xing Jie-Jiang (邢界江), Li Xian-Yao (李显尧), Li Zhi-Yong (李智勇), Yu Jin-Zhong (余金中), Yu Yu-De (俞育德). Chin. Phys. B, 2015, 24(12): 124209.
[3] High-speed 2×2 silicon-based electro-optic switch with nanosecond switch time
Xu Xue-Jun(徐学俊), Chen Shao-Wu(陈少武), Xu Hai-Hua (徐海华), Sun Yang(孙阳), Yu Yu-De(俞育德), Yu Jin-Zhong(余金中), and Wang Qi-Ming(王启明). Chin. Phys. B, 2009, 18(9): 3900-3904.
No Suggested Reading articles found!