ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers |
Zhao Xu-Liang (赵旭亮)a b, Yue Yuan-Bin (岳远斌)a b, Liu Tong (刘通)a b, Sun Jian (孙健)a b, Wang Xi-Bin (王希斌)a b c, Sun Xiao-Qiang (孙小强)a b c, Chen Chang-Ming (陈长鸣)a b c, Zhang Da-Ming (张大明)a b c |
a College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; b State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, China; c Jilin Provincial Engineering Laboratory on Polymer Planar Lightwave Circuit, Changchun 130012, China |
|
|
Abstract A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabricated. The absorption properties, refractive indexes, and surface morphologies of NOA73 film are characterized. The single-mode transmission condition is computed by the effective index method, and the percentage of optical field distributed in EO layer is optimized to be 93.78 %. By means of spin-coating, thermal evaporation, photolithography, and inductively coupled plasma etching, a Mach-Zehnder inverted-rib waveguide EO switch with micro-strip line electrode is fabricated on a silicon substrate. Scanning electron microscope characterization proves the physic-chemical compatibility between NOA73 cladding and DR1/SU-8 core material. The optical transmission loss of the fabricated switch is measured to be 2.5 dB/cm. The rise time and fall time of switching are 3.199 ns and 2.559 ns, respectively. These results indicate that the inverted-rib wave-guide based on UV-curable polymers can effectively reduce the optical transmission loss and improve the time response performance of an EO switch.
|
Received: 11 August 2014
Revised: 15 September 2014
Accepted manuscript online:
|
PACS:
|
41.20.-q
|
(Applied classical electromagnetism)
|
|
42.25.-p
|
(Wave optics)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177027, 61107019, 61205032, and 61261130586). |
Corresponding Authors:
Sun Xiao-Qiang
E-mail: sunxq@jlu.edu.cn
|
Cite this article:
Zhao Xu-Liang (赵旭亮), Yue Yuan-Bin (岳远斌), Liu Tong (刘通), Sun Jian (孙健), Wang Xi-Bin (王希斌), Sun Xiao-Qiang (孙小强), Chen Chang-Ming (陈长鸣), Zhang Da-Ming (张大明) Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers 2015 Chin. Phys. B 24 044101
|
[1] |
Zhang X Y, Lee B, Lin C Y, Wang A X, Hosseini A and Chen R T 2012 IEEE Photon. J. 4 2214
|
[2] |
Enami Y, Mathine D, DeRose C T, Norwood R A, Luo J, Jen A K Y and Peyghambarian N 2009 Appl. Phys. Lett. 94 213513
|
[3] |
Zhang X Y, Hosseini A, Lin X H, Subbaraman H and Chen R T 2013 IEEE J. Sel. Top. Quantum Electron. 19 3401115
|
[4] |
Li J Y, Lu D F and Qiu Z M 2014 Acta Phys. Sin. 63 077801 (in Chinese)
|
[5] |
Wen Y, Zhang X X, Huang C Y and Shen J 2011 Acta Phys. Sin. 60 104223 (in Chinese)
|
[6] |
Noguchi K, Mitomi O, Kawano K and Yanagibashi M 1993 IEEE Photon. Tech. Lett. 5 52
|
[7] |
Enami Y, Derose C T, Mathine D, Loychik C, Greenlee C, Norwood R A, Kim T D, Luo J, Tian Y, Jen A K Y and Peyghambarian N 2007 Nat. Photon. 1 180
|
[8] |
Sun J, Zhu G H, Sun X Q, Li T,Gao W N, Zhang D M and Hou A L 2009 Chin. Phys. Lett. 26 024206
|
[9] |
Chen C M, Zhang F, Wang H, Sun X Q, Wang F, Cui Z C and Zhang D M 2011 IEEE J. Quantum. Electron. 47 959
|
[10] |
Chen J J, Li Z, Zhang J S and Gong Q H 2008 Acta Phys. Sin. 57 5893 (in Chinese)
|
[11] |
Lin C Y, Wang A X, Zhang X Y, Lee B S and Chen R T 2012 Proc. SPIE 8258 82580Y
|
[12] |
Dalton L R, Lao D, Olbricht B C, Benight S, Bale D H, Davies J A, Ewy T, Hammond S R and Sullivan P A 2010 Opt. Mater. 32 658
|
[13] |
Dalton L R 2011 Polymers 3 1325
|
[14] |
Dalton L R Sullivan P A and Bale D H 2010 Chem. Rev. 110 22
|
[15] |
Dalton L R 2009 Thin Solid Films 518 428
|
[16] |
Tian H, Sun W M and Zhang Y D 2013 Acta Phys. Sin. 62 194204 (in Chinese)
|
[17] |
Tian H, Zhang Y D, Wang H, Qiu W, Wang N and Yuan P 2008 Acta Phys. Sin. 57 6400 (in Chinese)
|
[18] |
Li Y M and Chen B W 2013 Chin. Phys. B 22 124209
|
[19] |
Zhang D L, Wu C and Pun E Y B 2010 Chin. Phys. B 19 024214
|
[20] |
Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D and Hu X W 2014 Chin. Phys. B 23 044210
|
[21] |
Soref R A, Schmidtchen J amd Petermann K 1991 IEEE J. Quantum Electron. 27 1971
|
[22] |
Pogossian S P, Vescan L and Vonsovici A 1998 IEEE J. Lightwave Technol. 16 1851
|
[23] |
Ma H, Jen A K Y and Dalton L R 2002 Adv. Mater. 14 1339
|
[24] |
Zhang X Y, Zhang T, Xue X J, Cui Y P and Wu P Q 2009 J. Opt. A 11 085411
|
[25] |
Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D and Yu J Z 2013 Chin. Phys. B 22 114212
|
[26] |
Xu X J, Chen S W, Xu H H, Sun Y, Yu Y D, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 3900
|
[27] |
Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X and Chen S W 2013 Acta Phys. Sin. 62 194210 (in Chinese)
|
[28] |
Yang B, Yang L, Hu R, Sheng Z, Dai D X, Liu Q K and He S L 2009 IEEE J. Lightwave Technol. 27 4091
|
[29] |
Chen C M, Sun X Q, Zhang D, Shan Z B, Shin S Y and Zhang D M 2009 Opt. Laser Technol. 41 495
|
[30] |
Shao G, Qiu W and Wang W 2010 Microsyst. Technol. 16 1471
|
[31] |
Perentos N, Kostovski G and Mitchell A 2005 IEEE Photon. Tech. Lett. 17 2595
|
[32] |
Fischbeck G, Moosburger R, Topper M and Petermann K 1996 Electron. Lett. 32 212
|
[33] |
Yamada H, Chu T, Ishida S and Arakawa Y 2006 IEEE J. Sel. Top. Quantum Electron. 12 1371
|
[34] |
Ma C S, Wang X Y, Zhang H M, Zhang D M, Cui Z C and Liu S Y 2004 Opt. Quantum Electron. 36 759
|
[35] |
Zhao Y, Zhang D M, Wang F, Cui Z C, Yi M B, Ma C S, Guo W B and Liu S Y 2004 Opt. Laser Technol. 36 657
|
[36] |
Sun X Q, Li X D, Chen C M, Zhang K, Meng J, Wang X B, Yang T F, Zhang D M, Wang F and Xie Z Y 2012 Thin Solid Films 520 5946
|
[37] |
Yun B F, Hu G H, Lu C G and Cui Y P 2009 Opt. Commun. 282 1793
|
[38] |
McKenna M, Lin E S, Mickelson A R, Dinu A R and Dan J 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 2888
|
[39] |
Pliška T, Meier J, Eckau A, Ricci V, Duff A C L, Canva M, Stegeman G I, Raymond P, Kajzar F and Chan K P 2000 Appl. Phys. Lett. 76 265
|
[40] |
Li Y M and Cheng B W 2013 Chin Phys. B 22 124209
|
[41] |
Zhang X, Li Z Q and Tong K 2014 Acta Phys. Sin. 63 094207 (in Chinese)
|
[42] |
Salinas I, Garcés I, Alonso R, Pelayo J and Villuendas F 2005 Opt. Exress 13 564
|
[43] |
Li H H, Chen J A and Wang Q K 2010 Chin Phys. B 19 114203
|
[44] |
William M Diffey, Rebecca H Trimm, Mark G Temmen and Paul R Ashley 2005 J. Lightwave Technol. 23 1787
|
[45] |
Sun L Y, Gao Z Y, Zou D S, Zhang L M, Li T L and Shen G D 2012 Acta Phys. Sin. 61 206801 (in Chinese)
|
[46] |
Bora H, Haeng H A, Se H J, Jiyeon Y, Sang Y K, Sun Y P, Sun J K and Yong K K 2014 Macromol. Res. 22 678
|
[47] |
Zheng C T, Ma C S, Yan X, Wan X Y and Zhang D M 2009 Opt. Eng. 48 054601
|
[48] |
Seo B J, Kim S K, H Fetterman, W Steier, Jin D and Raluca Dinu 2008 J. Phys. Chem. C 112 7953
|
[49] |
B Bortnik, Y C Hung, H Tazawa, Seo B J, Luo J D, Alex K. Y. Jen, William H Steier and Harold R Fetterman 2007 IEEE J. Sel. Top. Quantum Electron. 13 104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|