Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047403    DOI: 10.1088/1674-1056/24/4/047403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable coplanar waveguide resonator with nanowires

Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨)
Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China
Abstract  

A tunable superconducting half-wavelength coplanar waveguide resonator (CPWR) with Nb parallel nanowires ~ 300 nm in width embedded in the center conductor was designed, fabricated, and measured. The frequency shift and the amplitude attenuation of the resonance peak under irradiation of 404-nm pulse laser were observed with different light powers at 4.2 K. The RF power supplied to such a CPWR can serve as current bias, which will affect the light response of the resonator.

Keywords:  coplanar waveguide      niobium      resonator      superconducting nanowire  
Received:  11 October 2014      Revised:  04 December 2014      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.-q (Properties of superconductors)  
  81.07.Gf (Nanowires)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922104 and 2011CBA00200), the National Natural Science Foundation of China (Grant No. 11474154), the Jiangsu Natural Science Fund for Distinguished Young Scholars (Grant No. BK2012013), and a Doctoral Program (Grant No. 20120091110030).

Corresponding Authors:  Sun Guo-Zhu, Wu Pei-Heng     E-mail:  gzsun@nju.edu.cn

Cite this article: 

Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨) Tunable coplanar waveguide resonator with nanowires 2015 Chin. Phys. B 24 047403

[1] Clarke J and Wilhelm F K 2008 Nature 453 1031
[2] Zhong Y, Li C, Wang H and Chen Y 2013 Chin. Phys. B 22 110313
[3] Herbert W, Benjamin T H V, Berthold-Georg E and Thomas B 2006 Rep. Prog. Phys. 69 1325
[4] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[5] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[6] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[7] Sillanpaa M A, Park J I and Simmonds R W 2007 Nature 449 438
[8] Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D and Esteve D 2008 J. Low Temp. Phys. 151 1034
[9] Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T and Delsing P 2008 Appl. Phys. Lett. 92 203501
[10] Mazin B A, Day P K, LeDuc H G, Vayonakis A and Zmuidzinas J 2002 Highly Innovative Space Telescope Concepts, Vol. 4849 (Bellingham: Spie-Int Soc Optical Engineering) p. 283
[11] Mazin B A 2004 "Microwave kinetic inductance detectors", Ph. D. Dissertation (Pasadena: California Institute of Technology)
[12] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 Nature 425 817
[13] Wang Y, Zhou P, Wei L, Li H, Zhang B, Zhang M, Wei Q, Fang Y and Cao C 2013 J. Appl. Phys. 114 153109
[14] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
[15] Natarajan C M, Tanner M G and Hadfield R H 2012 Supercond. Sci. Technol. 25 063001
[16] Zhang L, Zhao Q, Zhong Y, Chen J, Cao C, Xu W, Kang L, Wu P and Shi W 2009 Appl. Phys. B 97 187
[17] Zhou Y, Zhang L, Jia T, Zhao Q, Gu M, Qiu J, Kang L, Chen J and Wu P 2012 Acta Phys. Sin. 61 208501 (in Chinese)
[18] Göppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L and Wallraff A 2008 J. Appl. Phys. 104 113904
[19] Annunziata A J, Santavicca D F, Frunzio L, Gatelani C, Rooks M J, Frydman A and Prober D E 2010 Nanotechnology 21 445202
[20] Koki W, Keiji Y, Takeshi A and Satoshi K 1994 Jpn. J. Appl. Phys. 33 5708
[21] Maxfield B W and McLean W L 1965 Phys. Rev. 139 A1515
[22] Zhang L, Kang L, Chen J, Zhao Q, Jia T, Xu W, Cao C, Jin B and Wu P 2011 Acta Phys. Sin. 60 038501 (in Chinese)
[23] Doyle S, Dunscombe C, Mauskopf P, Aboush Z and Porch A 2005 16th International Symposium on Space Terahertz Technology, May 2-4, 2005, Goteborg, Sweden, p. 130
[24] Jerger M, Poletto S, Macha P, Hübner U, Il'ichev E and Ustinov A V 2012 Appl. Phys. Lett. 101 042604
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[3] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[6] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[7] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[8] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[9] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[10] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[11] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[12] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[13] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[14] Pulse-gated mode of commercial superconducting nanowire single photon detectors
Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(4): 040302.
[15] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
No Suggested Reading articles found!