CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide |
Wang Zhan-Yu (王占雨)a b, Zhou Yan-Li (周艳丽)c, Wang Xue-Qing (王雪青)b, Wang Fei (王飞)a b, Sun Qiang (孙强)a b, Guo Zheng-Xiao (郭正晓)a b d, Jia Yu (贾瑜)a b |
a International Joint Research Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001, China; b School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; c Department of Mechanical and Electrical Engineering, Henan Industry and Trade Vocational College, Zhengzhou 451191, China; d Department of Chemistry, University College London, London WC1H 0AJ, U.K. |
|
|
Abstract The temperature dependence of lattice constants is studied by using first-principles calculations to determine the effects of in-plane stiffness and charge transfer on the thermal expansions of monolayer semiconducting transition metal dichalcogenides. Unlike the corresponding bulk material, our simulations show that monolayer MX2 (M=Mo and W; X=S, Se, and Te) exhibits a negative thermal expansion at low temperatures, induced by the bending modes. The transition from contraction to expansion at higher temperatures is observed. Interestingly, the thermal expansion can be tailored regularly by alteration of the M or X atom. Detailed analysis shows that the positive thermal expansion coefficient is determined mainly by the in-plane stiffness, which can be expressed by a simple relationship. Essentially the regularity of this change can be attributed to the difference in charge transfer between the different elements. These findings should be applicable to other two-dimensional systems.
|
Received: 11 July 2014
Revised: 13 October 2014
Accepted manuscript online:
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.Np
|
(Layered systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274280 and 11104254) and the National Basic Research Program of China (Grant No. 2012CB921300). |
Corresponding Authors:
Jia Yu
E-mail: jiayu@zzu.edu.cn
|
Cite this article:
Wang Zhan-Yu (王占雨), Zhou Yan-Li (周艳丽), Wang Xue-Qing (王雪青), Wang Fei (王飞), Sun Qiang (孙强), Guo Zheng-Xiao (郭正晓), Jia Yu (贾瑜) Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide 2015 Chin. Phys. B 24 026501
|
[1] |
Zakharchenko K V, Katsnelson M I and Fasolino A 2009 Phys. Rev. Lett. 102 046808
|
[2] |
Li Z L and Cheng X L 2014 Chin. Phys. B 23 046201
|
[3] |
Reddy C D, Rajendran S and Liew K M 2006 Nanotechnology 17 864
|
[4] |
Topsakal M, Cahangirov S and Ciraci S 2010 Appl. Phys. Lett. 96 091912
|
[5] |
Şahin H, Topsakal M and Ciraci S 2011 Phys. Rev. B 83 115432
|
[6] |
Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
|
[7] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[8] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[9] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[10] |
Benameur M M, Radisavljevic B, Héron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
|
[11] |
Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
|
[12] |
Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801
|
[13] |
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576
|
[14] |
Miró P, Ghorbani-Asl M and Heine T 2013 Adv. Mater. 25 5473
|
[15] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[16] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[17] |
Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C and Kong J 2012 Nano Lett. 12 2784
|
[18] |
Kwon Y K, Berber S and Tománek D 2004 Phys. Rev. Lett. 92 015901
|
[19] |
Yoon D, Son Y W and Cheong H 2011 Nano Lett. 11 3227
|
[20] |
Singh V, Sengupta S, Solanki H S, Dhall R, Allain A, Dhara S, Pant P and Deshmukh M M 2010 Nanotechnology 21 165204
|
[21] |
Jiang J W, Wang J S and Li B 2009 Phys. Rev. B 80 205429
|
[22] |
Belenkii G L, Abdullayeva S G, Solodukhin A V and Suleymanov R A 1982 Solid State Commun. 44 1613
|
[23] |
Abdullaev N A, Suleimanov R A, Aldzhanov M A and Alieva L N 2002 Phys. Solid State 44 1859
|
[24] |
Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
|
[25] |
Murray R and Evans B 1979 J. Appl. Crystallogr. 12 312
|
[26] |
Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[28] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[29] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[30] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[31] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[32] |
Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
|
[33] |
Wang Z, Wang F, Wang L, Jia Y and Sun Q 2013 J. Appl. Phys. 114 063508
|
[34] |
Souvatzis P and Eriksson O 2008 Phys. Rev. B 77 024110
|
[35] |
Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chemie 122 4153
|
[36] |
Bollinger M V, Jacobsen K W and Norskov J K 2003 Phys. Rev. B 67 085410
|
[37] |
Ataca C, Şahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
|
[38] |
Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
|
[39] |
Najmaei S, Ajayan P M and Lou J 2013 Nanoscale 5 9758
|
[40] |
Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
|
[41] |
Rice C, Young R J, Zan R, Bangert U, Wolverson D, Georgiou T, Jalil R, and Novoselov K S 2013 Phys. Rev. B 87 081307
|
[42] |
Schelling P K and Keblinski P 2003 Phys. Rev. B 68 035425
|
[43] |
Sevik C 2014 Phys. Rev. B 89 035422
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|