Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 026501    DOI: 10.1088/1674-1056/24/2/026501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide

Wang Zhan-Yu (王占雨)a b, Zhou Yan-Li (周艳丽)c, Wang Xue-Qing (王雪青)b, Wang Fei (王飞)a b, Sun Qiang (孙强)a b, Guo Zheng-Xiao (郭正晓)a b d, Jia Yu (贾瑜)a b
a International Joint Research Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001, China;
b School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
c Department of Mechanical and Electrical Engineering, Henan Industry and Trade Vocational College, Zhengzhou 451191, China;
d Department of Chemistry, University College London, London WC1H 0AJ, U.K.
Abstract  The temperature dependence of lattice constants is studied by using first-principles calculations to determine the effects of in-plane stiffness and charge transfer on the thermal expansions of monolayer semiconducting transition metal dichalcogenides. Unlike the corresponding bulk material, our simulations show that monolayer MX2 (M=Mo and W; X=S, Se, and Te) exhibits a negative thermal expansion at low temperatures, induced by the bending modes. The transition from contraction to expansion at higher temperatures is observed. Interestingly, the thermal expansion can be tailored regularly by alteration of the M or X atom. Detailed analysis shows that the positive thermal expansion coefficient is determined mainly by the in-plane stiffness, which can be expressed by a simple relationship. Essentially the regularity of this change can be attributed to the difference in charge transfer between the different elements. These findings should be applicable to other two-dimensional systems.
Keywords:  transition metal dichalcogenide      thermal expansion      phonon  
Received:  11 July 2014      Revised:  13 October 2014      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.Np (Layered systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274280 and 11104254) and the National Basic Research Program of China (Grant No. 2012CB921300).
Corresponding Authors:  Jia Yu     E-mail:  jiayu@zzu.edu.cn

Cite this article: 

Wang Zhan-Yu (王占雨), Zhou Yan-Li (周艳丽), Wang Xue-Qing (王雪青), Wang Fei (王飞), Sun Qiang (孙强), Guo Zheng-Xiao (郭正晓), Jia Yu (贾瑜) Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide 2015 Chin. Phys. B 24 026501

[1] Zakharchenko K V, Katsnelson M I and Fasolino A 2009 Phys. Rev. Lett. 102 046808
[2] Li Z L and Cheng X L 2014 Chin. Phys. B 23 046201
[3] Reddy C D, Rajendran S and Liew K M 2006 Nanotechnology 17 864
[4] Topsakal M, Cahangirov S and Ciraci S 2010 Appl. Phys. Lett. 96 091912
[5] Şahin H, Topsakal M and Ciraci S 2011 Phys. Rev. B 83 115432
[6] Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
[7] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[8] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[9] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[10] Benameur M M, Radisavljevic B, Héron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
[11] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[12] Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801
[13] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576
[14] Miró P, Ghorbani-Asl M and Heine T 2013 Adv. Mater. 25 5473
[15] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[16] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[17] Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C and Kong J 2012 Nano Lett. 12 2784
[18] Kwon Y K, Berber S and Tománek D 2004 Phys. Rev. Lett. 92 015901
[19] Yoon D, Son Y W and Cheong H 2011 Nano Lett. 11 3227
[20] Singh V, Sengupta S, Solanki H S, Dhall R, Allain A, Dhara S, Pant P and Deshmukh M M 2010 Nanotechnology 21 165204
[21] Jiang J W, Wang J S and Li B 2009 Phys. Rev. B 80 205429
[22] Belenkii G L, Abdullayeva S G, Solodukhin A V and Suleymanov R A 1982 Solid State Commun. 44 1613
[23] Abdullaev N A, Suleimanov R A, Aldzhanov M A and Alieva L N 2002 Phys. Solid State 44 1859
[24] Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
[25] Murray R and Evans B 1979 J. Appl. Crystallogr. 12 312
[26] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[32] Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
[33] Wang Z, Wang F, Wang L, Jia Y and Sun Q 2013 J. Appl. Phys. 114 063508
[34] Souvatzis P and Eriksson O 2008 Phys. Rev. B 77 024110
[35] Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chemie 122 4153
[36] Bollinger M V, Jacobsen K W and Norskov J K 2003 Phys. Rev. B 67 085410
[37] Ataca C, Şahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[38] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[39] Najmaei S, Ajayan P M and Lou J 2013 Nanoscale 5 9758
[40] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
[41] Rice C, Young R J, Zan R, Bangert U, Wolverson D, Georgiou T, Jalil R, and Novoselov K S 2013 Phys. Rev. B 87 081307
[42] Schelling P K and Keblinski P 2003 Phys. Rev. B 68 035425
[43] Sevik C 2014 Phys. Rev. B 89 035422
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[5] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[9] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[12] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[13] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[14] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!