Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017404    DOI: 10.1088/1674-1056/24/1/017404
RAPID COMMUNICATION Prev   Next  

Variational Monte Carlo study of the nematic state in iron-pnictide superconductors with a five-orbital model

Zheng Xiao-Jun (郑晓军)a, Huang Zhong-Bing (黄忠兵)b c, Zou Liang-Jian (邹良剑)a d
a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
b Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062, China;
c Beijing Computational Science Research Center, Beijing 100084, China;
d Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We perform a variational Monte Carlo study of the nematic state in iron-pnictide superconductors within a realistic five-orbital model. Our numerical results show that the nematic state, formed by introducing an anisotropic hopping order into the projected wave function, is not stable unless the off-site Coulomb interaction V exceeds a critical value. This demonstrates that V plays a key role in forming the nematic state in iron-pnictide superconductors. In the nematic state, the orbital order and the anisotropic spin correlations are consistent with the experimental observations. We argue that the experimentally observed anisotropic magnetic couplings and structural transition are associated with the nematic state and can be understood in a unified framework.

Keywords:  iron-pnictide superconductors      nematic state      off-site Coulomb interaction      variational Monte Carlo simulation  
Received:  05 November 2014      Revised:  10 November 2014      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274310, 11474287, 11174072, and 91221103) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20104208110001).

Corresponding Authors:  Huang Zhong-Bing, Zou Liang-Jian     E-mail:  huangzb@hubu.edu.cn;zou@theory.issp.ac.cn

Cite this article: 

Zheng Xiao-Jun (郑晓军), Huang Zhong-Bing (黄忠兵), Zou Liang-Jian (邹良剑) Variational Monte Carlo study of the nematic state in iron-pnictide superconductors with a five-orbital model 2015 Chin. Phys. B 24 017404

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Johnston D C 2010 Adv. Phys. 59 803
[3] Li H C, Xiang Y Y and Wang Q H 2014 Chin. Phys. Lett. 31 67404
[4] Huang Q, Zhao J, Lynn J W, Chen G F, Luo J L, Wang N L and Dai P C 2008 Phys. Rev. B 78 054529
[5] Lester C, Chu J H, Analytis J G, Capelli S C, Erickson A S, Condron C L, Toney M F, Fisher I R and Hayden S M 2009 Phys. Rev. B 79 144523
[6] Pratt D K, Tian W, Kreyssig A, Zarestky J L, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I and McQueeney R J 2009 Phys. Rev. Lett. 103 087001
[7] Wang Z, Cai Y, Yang H X, Tian H F, Wang Z W, Ma C, Chen Z and Li J Q 2013 Chin. Phys. B 22 87409
[8] Ma L and Yu W Q 2013 Chin. Phys. B 22 87414
[9] Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[10] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 710
[11] Dusza A, Lucarelli A, Pfuner F, Chu J H, Fisher I R and Degiorgi L 2011 Europhys. Lett. 93 37002
[12] Nakajima M, Liang T, Ishida S, Tomioka Y, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Ito T and Uchida S 2011 Proc. Natl. Acad. Sci. USA 108 12238
[13] Nakajima M, Ishida S, Tomioka Y, Kihou K, Lee C H, Iyo A, Ito T, Kakeshita T, Eisaki H and Uchida S 2012 Phys. Rev. Lett. 109 217003
[14] Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C and Davis J C 2010 Science 327 181
[15] Allan M P, Chuang T M, Massee F, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S and Davis J C 2013 Nat. Phys. 9 220
[16] Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[17] Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Hu J P and Dai P C 2009 Nat. Phys. 5 555
[18] Fang C, Yao H, Tsai W F, Hu J P and Kivelson S A 2008 Phys. Rev. B 77 224509
[19] Fernandes R M, Abrahams E and Schmalian J 2011 Phys. Rev. Lett. 107 217002
[20] Fernandes R M, Chubukov A V, Knolle J, Eremin I and Schmalian J 2012 Phys. Rev. B 85 024534
[21] Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
[22] Chen C C, Maciejko J, Sorini A P, Moritz B, Singh R R P and Devereaux T P 2010 Phys. Rev. B 82 100504
[23] Lee W C and Phillips P W 2012 Phys. Rev. B 86 245113
[24] Bao W 2013 Chin. Phys. B 22 87405
[25] Lee W C, Lv W C and Arham H Z 2013 Int. J. Mod. Phys. B 27 1330014
[26] Lv W C and Phillips P 2011 Phys. Rev. B 84 174512
[27] Zheng X J, Huang Z B, Liu D Y and Zou L J 2014 arXiv:1407.1411v1 [cond-mat.supr-con]
[28] Graser S, Maier T A, Hirschfeld P J and Scalapino D J 2009 New J. Phys. 11 025016
[29] Aichhorn M, Pourovskii L, Vildosola V, Ferrero M, Parcollet O, Miyake T, Georges A and Biermann S 2009 Phys. Rev. B 80 085101
[30] Yang W L, Sorini A P, Chen C C, Moritz B, Lee W S, Vernay F, Olalde-Velasco P, Denlinger J D, Delley B, Chu J H, Analytis J G, Fisher I R, Ren Z A, Yang J, Lu W, Zhao Z X, van den Brink J, Hussain Z, Shen Z X and Devereaux T P 2009 Phys. Rev. B 80 014508
[31] Anisimov V I, Korotin D M, Korotin M A, Kozhevnikov A V, Kunes J, Shorikov A O, Skornyakov S L and Streltsov S V 2009 J. Phys.: Condens. Matter 21 075602
[32] Edegger B, Muthukumar V N and Gros C 2006 Phys. Rev. B 74 165109
[33] Zheng X J, Huang Z B and Zou L J 2014 J. Phys. Soc. Jpn. 83 024705
[34] Gros C 1989 Ann. Phys. 189 53
[35] Yokoyama H and Ogata M 1996 J. Phys. Soc. Jpn. 65 3615
[36] Yokoyama H and Shiba H 1988 J. Phys. Soc. Jpn. 57 2482
[37] Yamaji K, Yanagisawa T, Nakanishi T and Koike S 1998 Phys. C: Supercond. 304 225
[38] Ceperley D, Chester G V and Kalos M H 1977 Phys. Rev. B 16 3081
[39] Umrigar C J 2000 Phys. Rev. Lett. 60 1719
[40] Miyake T, Nakamura K, Arita R and Imada M 2010 J. Phys. Soc. Jpn. 79 044705
[1] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[2] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[3] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[4] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[5] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[6] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[7] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[8] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[9] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[10] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[11] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[12] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[13] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[14] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[15] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
No Suggested Reading articles found!