Effects of GaN cap layer thickness on an AlN/GaN heterostructure
Zhao Jing-Tao (赵景涛)a, Lin Zhao-Jun (林兆军)a, Luan Chong-Biao (栾崇彪)a, Lü Yuan-Jie (吕元杰)b, Feng Zhi-Hong (冯志宏)b, Yang Ming (杨铭)a
a School of Physics, Shandong University, Jinan 250100, China; b National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract In this study, we investigate the effects of GaN cap layer thickness on the two-dimensional electron gas (2DEG) electron density and 2DEG electron mobility of AlN/GaN heterostructures by using the temperature-dependent Hall measurement and theoretical fitting method. The results of our analysis clearly indicate that the GaN cap layer thickness of an AlN/GaN heterostructure has influences on the 2DEG electron density and the electron mobility. For the AlN/GaN heterostructures with a 3-nm AlN barrier layer, the optimized thickness of the GaN cap layer is around 4 nm and the strained a-axis lattice constant of the AlN barrier layer is less than that of GaN.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174182 and 61306113) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20110131110005).
Corresponding Authors:
Lin Zhao-Jun
E-mail: linzj@sdu.edu.cn
Cite this article:
Zhao Jing-Tao (赵景涛), Lin Zhao-Jun (林兆军), Luan Chong-Biao (栾崇彪), Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志宏), Yang Ming (杨铭) Effects of GaN cap layer thickness on an AlN/GaN heterostructure 2014 Chin. Phys. B 23 127104
[1]
Liu Z, Wang X L, Wang J X, Hu G X, Guo L C and Li J M 2007 Chin. Phys. 16 1467
[2]
Cen L B, Shen B, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 3905
[3]
Lü Y J, Feng Z H, Han T T, Dun S B, Gu G D, Yin J Y, Sheng B C, Liu B, Fang Y L, Cai S J, Lin Z J, Luan C B and Yang Q H 2013 Appl. Phys. Lett. 103 113502
[4]
Lü Y J, Feng Z H, Lin Z J, Guo H Y, Gu G D, Yin J Y, Wang Y G, Xu P, Song X B and Cai S J 2014 Chin. Phys. B 23 077105
[5]
Taking S, Banerjee A, Zhou H, Li X, Khokhar A Z, Oxland R, McGregor I, Bentley S, Rahman F, Thayne I, Dabiran A M, Wowchak A M, Cui B and Wasige E 2010 Electron. Lett. 46 301
[6]
Seo S, Zhao G Y and Pavlidis D 2008 Electron. Lett. 44 244
[7]
Lee M L, Sheu J K, Lai W C, Su Y K, Chang S J, Kao C J, Tun C J, Chen M G, Chang W H, Chi G C and Tsai J M 2003 J. Appl. Phys. 94 1753
[8]
Sheu J K, Lee M L and Lai W C 2005 Appl. Phys. Lett. 86 052103
[9]
Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112
[10]
Gurusinghe M N, Davidsson S K and Andersson T G 2005 Phys. Rev. B 72 045316
[11]
Asgari A, Babanejad S and Faraone L 2011 J. Appl. Phys. 110 113713
[12]
Ridley B K, Foutz B E and Eastman L F 2000 Phys. Rev. B 61 16862
[13]
Lisesivdin S B, Acar S, Kasap M, Ozcelik S, Gokden S and Ozbay E 2007 Semicond. Sci. Technol. 22 543
[14]
Kaun S W, Burke P G, Wong M H, Kyle E C H, Mishra U K and Speck J S 2012 Appl. Phys. Lett. 101 262102
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.