Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127103    DOI: 10.1088/1674-1056/23/12/127103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spatially nonlocal effects on optical absorption properties incoupled quantum wells with an applied electric field

Wang Chao-Yang (王晁阳), Wang Guang-Hui (王光辉)
Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
Abstract  Based on the microscopic nonlocal optical response theory, the intersubband optical absorption properties in AlGaAs/GaAs couple quantum wells (CQWs) are investigated for p-polarized states. The numerical results show that spatial nonlocality of optical responses can induce a radiation shift on optical absorption spectra due to nonlocal effects. The dependence of the radiation shift on the CQW structure and the applied electric field is clarified. It is also demonstrated that the maximal radiation shift and the least optical absorbance can be obtained by adopting an appropriate CQW structure and a suitable applied electric field. This work may provide some methods of designing the nanomaterials with controllable nonlocality and observing the spatial nonlocal effects in experiment.
Keywords:  optical absorption      coupled quantum well      spatial nonlocality  
Received:  14 April 2014      Revised:  03 July 2014      Accepted manuscript online: 
PACS:  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  68.65.Fg (Quantum wells)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Project supported by the National Natural Science Youth Foundation of China (Grant No. 60906042) and the National Natural Science Foundation of China (Grant Nos. 10974058 and 61178003).
Corresponding Authors:  Wang Chao-Yang, Wang Guang-Hui     E-mail:  jnykq4@yeah.net;wanggh@scnu.edu.cn

Cite this article: 

Wang Chao-Yang (王晁阳), Wang Guang-Hui (王光辉) Spatially nonlocal effects on optical absorption properties incoupled quantum wells with an applied electric field 2014 Chin. Phys. B 23 127103

[1]Lim H, Zhang W, Tsao S, Sills T, Szafraniec J, Mi K, Movaghar B and Razeghi M 2005 Phys. Rev. B 72 085332
[2]Dahdah N E, Aubin G, Harmand J C, Ramdane A, Shen A, Devaux F, Garreau A and Benkelfat B E 2004 Appl. Phys. Lett. 84 4268
[3]Wang G H 2005 Phys. Rev. B 72 155329
[4]Yildirim H and Tomak M 2005 Phys. Rev. B 72 115340
[5]Lu L L, Xie W F and Hassanabadi H 2011 J. Appl. Phys. 109 063108
[6]Kosionis S G, Terzis A F, Simserides C and Paspalakis E 2010 J. Appl. Phys. 108 034316
[7]Han S, Hao Z B and Luo Y 2007 Chin. Phys. Lett. 24 2101
[8]Gu Y, Zhang Y G, Song Y X, Ye H, Cao Y Y, Li A Z and Wang S M 2012 Chin. Phys. B 22 037802
[9]Wu H W and Mi X W 2012 Chin. Phys. B 21 107102
[10]Mi X W and Wu H W 2013 Chin. Phys. B 22 037104
[11]Chen B, Guo K X, Liu Z L, Wang R Z, Zheng Y B and Li B 2008 J. Phys.: Condens. Matter 20 255214
[12]Choubani M, Ben Mahrsia R, Bouzaiene L and Maaref H 2013 J. Lumin. 144 158
[13]Chang R and Leung P T 2006 Phys. Rev. B 73 125438
[14]Panda S, Panda B K, Fung S and Beling C D 1996 J. Appl. Phys. 80 1532
[15]Tignon J, Heller O, Roussignol Ph, Delalande C and Bastard G 1998 Appl. Phys. Lett 72 1217
[16]Wang G H and Guo Q 2007 Phys. Rev. B 75 205337
[17]Chen S J and Wang G H 2013 J. Appl. Phys. 113 023515
[18]Wang G H and Wang R Q 2013 Appl. Phys. Lett. 102 021906
[19]Pekar S I 1958 Zh. Eksp. Teor. Fiz. 34 1176
[20]Ginzburg V L 1958 Zh. Eksp. Teor. Fiz. 34 1593
[21]Liu A S and Keller O 1995 Phys. Scr. 52 116
[22]Keller O 1996 Phys. Rep. 268 85
[23]Cho K 2003 Optical Response of Nanostructures: Microscopic Nonlocal Theory (Berlin: Springer-Verlag) pp. 13-31
[24]Ohfuti Y and Cho K 1995 Phys. Rev. B 51 14379
[25]Ohfuti Y and Cho K 1995 Phys. Rev. B 52 4828
[26]Pollard R. J, Murphy A, Hendren W R, Evans P R, Atkinson R, Wurtz G A, Zayats A V and Viktor A Podolskiy 2009 Phys. Rev. Lett. 102 127405
[27]McMahon J M, Gray S K and Schatz G C 2009 Phys. Rev. Lett. 103 097403
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[4] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[5] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[6] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[7] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[8] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
[9] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[10] Double band-inversions of bilayer phosphorene under strain and their effects on optical absorption
Shi He(何诗), Mou Yang(杨谋), Rui-Qiang Wang(王瑞强). Chin. Phys. B, 2018, 27(4): 047303.
[11] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[12] Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field
Hong Liu(刘红). Chin. Phys. B, 2018, 27(12): 127301.
[13] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[14] Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass
Wang Tie-Shan (王铁山), Duan Bing-Huang (段丙皇), Tian Feng (田丰), Peng Hai-Bo (彭海波), Chen Liang (陈亮), Zhang Li-Min (张利民), Yuan Wei (袁伟). Chin. Phys. B, 2015, 24(7): 076102.
[15] Exploring photocurrent output from donor/acceptor bulk-heterojunctions by monitoring exciton quenching
Wang Xin-Ping (王新平), He Zhi-Qun (何志群), Liang Chun-Jun (梁春军), Qiu Hai-An (邱海安), Jing Xi-Ping (荆西平). Chin. Phys. B, 2015, 24(6): 063301.
No Suggested Reading articles found!