Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127101    DOI: 10.1088/1674-1056/23/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles

Miao Nan-Xi (苗楠茜)a, Pu Chun-Ying (濮春英)a, He Chao-Zheng (何朝政)a, Zhang Fei-Wu (张飞武)b c, Lu Cheng (卢成)a, Lu Zhi-Wen (卢志文)a, Zhou Da-Wei (周大伟)a
a College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
b Nanochemistry Research Institute, Curtin University, Perth, WA-6845, Australia;
c State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Abstract  First principles calculations are preformed to systematically investigate the electronic structures, elastic and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under pressure. The calculated structural parameters and elastic moduli are in good agreement with the available theoretical values at zero pressure. The elastic constants of the two phases under pressure are calculated by stress–strain method. It is found that both phases satisfy the mechanical stability criteria within 60 GPa. With the increase of pressure, the degree of the anisotropy decreases rapidly in the monoclinic phase, whereas it remains almost constant in the orthorhombic phase. Furthermore, using the hybrid density-functional theory, the monoclinic and orthorhombic phases are found to be wide band-gap semiconductors with band gaps of about 2.85 eV and 3.21 eV, respectively. The elastic moduli, ductile or brittle behaviors, compressional and shear wave velocities as well as Debye temperatures as a function of pressure in both phases are also investigated in detail.
Keywords:  SiC2N4      density functional theory      Debye temperature      elastic anisotropy  
Received:  27 April 2014      Revised:  15 June 2014      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.D- (Elasticity)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Projected supported by the Henan Joint Funds of the National Natural Science Foundation of China (Grant Nos. U1304612, U1404608, and U1404216), the Special Fund for the Theoretical Physics of China (Grant No. 11247222), the Nanyang Normal University Science Foundation, China (Grant Nos. ZX2010011, ZX2012018, and ZX2014088), the National Natural Science Foundation of China (Grant Nos. 11304167 and 51374132), the Postdoctoral Science Foundation of China (Grant No. 20110491317), and the Young Core Instructor Foundation of Henan Province, China (Grant No. 2012GGJS-152).
Corresponding Authors:  Zhou Da-Wei     E-mail:  zhoudawei@nynu.edu.cn

Cite this article: 

Miao Nan-Xi (苗楠茜), Pu Chun-Ying (濮春英), He Chao-Zheng (何朝政), Zhang Fei-Wu (张飞武), Lu Cheng (卢成), Lu Zhi-Wen (卢志文), Zhou Da-Wei (周大伟) Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles 2014 Chin. Phys. B 23 127101

[1]Wentorf R H, DeVries R C and Bundy F P 1980 Science 208 873
[2]Leger J M and Haines J 1997 Endeavour. 21 121
[3]Brook R J 1999 Nature 400 312
[4]Brazhkin V V, Lyapin A G and Hemley R J 2002 Phil. Mag. A 82 231
[5]McMillan P F 2002 Nat. Mater. 1 19
[6]Teter D M and Hemley R J 1996 Science 271 53
[7]Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[8]Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[9]Zhang X X, Wang Y C, Lv J, Zhu C Y, Li Q, Zhang M, Li Q and Ma Y M 2013 J. Chem. Phys. 138 114101
[10]Li Q, Liu H Y, Zhou D, Zheng W T, Wu Z J and Ma Y M 2012 Phys. Chem. Chem. Phys. 14 13081
[11]Xu L F, Zhao Z S, Wang L M, Xu B, He J L, Liu Z Y and Tian Y J 2010 J. Phys. Chem. C 114 22688
[12]Liu H Y, Li Q, Zhu L and Ma Y M 2011 Phys. Lett. A 375 771
[13]Li Q, Wang M, Oganov A R, Cui T, Ma Y M and Zou G T 2009 J. Appl. Phys. 105 053514
[14]Tian F B, Wang J H, He Z, Ma Y M, Wang L C, Cui T, Chen C B, Liu B B and Zou G T 2008 Phys. Rev. B 78 235431
[15]Gong Z, Wang E G, Xu G C and Chen Y 1999 Thin Solid Films 348 114
[16]Chen L C, Chen K H, Wei, S L, Kichambare P D, Wu J J, Lu T R and Kuo C T 1999 Thin Solid Films 355-356 112
[17]Sundaram K B, Alizadeh Z, Todi R M and Desai V H 2004 Mater. Sci. Eng. A 368 103
[18]Wang C Z, Wang E G and Dai Q Y 1998 J. Appl. Phys. 83 1975
[19]Lowther J E, Amkreutz M, Frauenheim T, Kroke E and Riedel R 2003 Phys. Rev. B 68 033201
[20]Zhang X Y, Chen Z W, Du H J, Yang C, Ma M Z, He J L, Tian Y J and Liu R P 2008 J. Appl. Phys. 103 083533
[21]Du H J, Li D C, He J L, Yu D L, Xu B, Liu Z Y, Wang H T and Tian Y J 2009 Diamond Relat. Mater. 18 72
[22]Riedel R, Greiner A, Miche G, Dressler W, Fuess H, Bill J and Aldinger F 1997 Angew. Chem., Int. Ed. Engl. 36 603
[23]Wang H B, Li Q, Wang H, Liu H Y, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 8609
[24]Ding Y C, Chen M, Jiang M H and Gao X Y 2012 Physica B 407 4323
[25]Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[26]Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[27]Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[28]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29]Vanderbilt D 1990 Phys. Rev. B 41 7892
[30]Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[31]Mulliken R S 1955 J. Chem. Phys. 23 1833
[32]Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[33]Voigt W 1928 Lehrburch der Kristallphys (Leipzig: Teubner Press)
[34]Reuss A and Angew Z 1929 Math. Mech. 9 49
[35]Hill R 1952 Proc. Phys. Soc. Lond. 65 349
[36]Nieto Sanz D, Loubeyre P, Crichton W and Mezouar M 2004 Phys. Rev. B 70 214108
[37]Hu Z G, Yoshimura M, Mori Y and Sasaki T 2004 J. Cryst. Growth 260 287
[38]Pugh S F 1954 Philos. Mag. 45 823
[39]Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka)
[40]Ravindran P, Fast L, Korzhavyi P A, Johnnsson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[41]Chung D H and Buessem W R 1968 Anisotropy in Single-crystal Refractory Compounds: Proceedings (New York: Plenum Press)
[42]Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[43]Anderson O L 1963 J. Phys. Chem. Solids 24 909
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!