Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118502    DOI: 10.1088/1674-1056/23/11/118502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optical response of Al/Ti bilayer transition edge sensors

Zhang Qing-Ya (张青雅)a b, Wang Tian-Shun (王天顺)c d, Liu Jian-She (刘建设)a b, Dong Wen-Hui (董文慧)a b, He Gen-Fang (何根芳)a b, Li Tie-Fu (李铁夫)a b, Zhou Xing-Xiang (周幸祥)c d, Chen Wei (陈炜)a b
a Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;
b Institute of Microelectronics, Department of Micro/Nanoelectronics, Tsinghua University, Beijing 100084, China;
c Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China;
d CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  We report the optical response characteristics of Al/Ti bilayer transition edge sensors (TESs), which are mainly comprised of Al/Ti bilayer thermometers and suspended SiN membranes for thermal isolation. The measurement was performed in a 3He sorption refrigerator and the device's response to optical pulses was investigated using a pulsed laser source. Based on these measurements, we obtained the effective recovery time (τ eff) of the devices at different biases and discussed the dependence of τeff on the bias. The device with a 940 μm × 940 μm continuous suspended SiN membrane demonstrated a fast response speed with τ eff = 3.9 μs, which indicates a high temperature sensitivity (α = T/R ·d R/dT = 326). The results also showed that the TES exhibits good linearity under optical pulses of variable widths.
Keywords:  transition edge sensors      superconducting detectors  
Received:  04 March 2014      Revised:  24 April 2014      Accepted manuscript online: 
PACS:  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00304), Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089314), and the National Natural Science Foundation of China (Grant Nos. 60836001 and 11273023 ).
Corresponding Authors:  Zhou Xing-Xiang, Chen Wei     E-mail:  xizhou@ustc.edu.cn;weichen@tsinghua.edu.cn

Cite this article: 

Zhang Qing-Ya (张青雅), Wang Tian-Shun (王天顺), Liu Jian-She (刘建设), Dong Wen-Hui (董文慧), He Gen-Fang (何根芳), Li Tie-Fu (李铁夫), Zhou Xing-Xiang (周幸祥), Chen Wei (陈炜) Optical response of Al/Ti bilayer transition edge sensors 2014 Chin. Phys. B 23 118502

[1] Irwin K D 1995 Appl. Phys. Lett. 66 1998
[2] Doriese W B, Ullom J N, Beall J A, Duncan W D, Ferreira L, Hilton G C, Horansky R D, Irwin K D, Mates J A B, Reintsema C D, Vale L R, Xu Y and Zink B L 2007 Appl. Phys. Lett. 90 193508
[3] Cabrera B, Claarke R M, Colling P, Miller A J, Nam S and Romani R W 1998 Appl. Phys. Lett. 73 735
[4] Martinis J M, Hilton G C, Irwin K D and Wollman D A 2000 Nucl. Instrum. Methods A 444 23
[5] Myers M J, Holzapfel W, Lee A T, O'Brient R, Richards P L and Tran H T 2005 Appl. Phys. Lett. 86 114103
[6] Suzuki A, Arnold K, Edwards J, Engargiola G, Ghribi A, Holzapfel W, Lee A, Meng X, Myers M, O'Brient R, Quealy E, Rebeiz G and Richards P 2012 J. Low Temp. Phys. 167 852
[7] Westbrook B, Lee A, Meng X, Suzuki A, Arnold K, Shirokoff E, George E, Aubin F, Dobbs M, Macdermid K, Hanany S, Raach K, Aboobaker A, Hubmayr J, Oshima T, Kawamura M and Kohno K 2012 J. Low Temp. Phys. 167 885
[8] Zhang Q, Dong W, Wang T, Chen J, Liu J, Li T, Zhou X and Chen W 2014 Chin. J. Low. Temp. Phys. 36 7
[9] Zhang Q, Liu J, Dong W, Wang T, He G, Li T, Zhou X and Chen W 2014 Chin. Sci. Bull. 59 2292
[10] Brevik J A, Aikin R W, Amiri M, et al. 2010 Proceeding of SPIE 7741, Millimeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy V, 77411H
[11] George E M, Ade P, Aird K A, et al. 2012 Proceeding of SPIE 8452, Millimeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy VI, 84521F
[12] Irwin K D and Hilton G C 2005 Topics Appl. Phys. 99 63
[13] Taralli E, Portesi C, Rocci R, Rajteri M and Monticone E 2009 IEEE Trans. Appl. Supercon. 19 493
[14] Hunt C L 2004 Transition-Edge Superconducting Antenna-Coupled Bolometer (Ph.D. dissertation) (Pasadena: California Institute of Technology)
[15] Turner A D, Bock J J, Beeman J W, Glenn J, Hargrave P C, Hristov V V, Nguyen H T, Rahman F and Sethurman S 2001 Appl. Opt. 40 4921
[16] Rosenberg D, Lita A E, Miller A J, Nam S and Schwall R E 2005 IEEE Trans. Appl. Supercon. 15 575
[17] Lolli L 2012 Photon-Number Resolving by Superconductive Devices (Ph. D. dissertation) (Torino: Istituto Nazionale di Ricerca Metrologica)
[18] Rajteri M, Taralli E, Portesi C, Monticone E and Beyer J 2009 Metrologia 46 S283
[19] Fukuda D, Damayanthi R M T, Yoshizawa A, Zen N, Takahashi H, Amemiya K and Ohkubo M 2007 IEEE Trans. Appl. Supercon. 17 259
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[3] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[4] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[5] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[6] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[7] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[8] Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(1): 017302.
No Suggested Reading articles found!