Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118501    DOI: 10.1088/1674-1056/23/11/118501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Superconducting quantum interference devices with different damped junctions operated in directly coupled current- and voltage-bias modes

Zeng Jia (曾佳)a b c d, Zhang Yi (张懿)b c, Qiu Yang (邱阳)a c d, Zhang Guo-Feng (张国峰)a c, Wang Yong-Liang (王永良)a c, Kong Xiang-Yan (孔祥燕)a c, Xie Xiao-Ming (谢晓明)a c
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
b Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany;
c Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai, Shanghai 200050, China and FZJ, D-52425 Jülich Germany;
d University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We investigate niobium thin film superconducting quantum interference devices (SQUIDs) with different Steward-McCumber parameters βc operated in both current- and voltage-bias modes. We experimentally prove that there is no difference between the two bias modes with respect to the SQUID intrinsic noise and the noise contribution from the preamplifier. Furthermore, the relationships of the SQUID dynamic parameters, (Rd)current bias ≈ (Rd)voltage bias and (∂V/∂Φ)current bias ≈ [(∂i/∂Φ)Rd]voltage bias, are always satisfied. For a strongly damped SQUID with βc ≈ 0.25, additional positive feedback (APF) and noise cancellation (NC) were employed to enhance ∂V/∂Φ, the former showing a degradation in the linear flux range but otherwise the same with NC. For a weakly damped SQUID with βc ≈ 3, it is directly connected to the preamplifier without APF or NC, and a low SQUID system noise of about 4 μΦ 0/√Hz is measured, which is close to its intrinsic noise.
Keywords:  SQUID      noise      bias mode      Steward-McCumber parameter  
Received:  06 March 2014      Revised:  03 June 2014      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  43.50.+y (Noise: its effects and control)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04010100) and One Hundred Person Project of the Chinese Academy of Sciences.
Corresponding Authors:  Kong Xiang-Yan     E-mail:  xykong@mail.sim.ac.cn

Cite this article: 

Zeng Jia (曾佳), Zhang Yi (张懿), Qiu Yang (邱阳), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明) Superconducting quantum interference devices with different damped junctions operated in directly coupled current- and voltage-bias modes 2014 Chin. Phys. B 23 118501

[1] Drung D and Mück M 2004 SQUID Electronics: The SQUID Handbook (Vol. 1) (Ed. Clarke J and Braginski A I) (Weinheim: Wiley-VCH) pp. 127-70
[2] Forgacs R L and Warnick A 1967 Rev. Sci. Instrum. 38 214
[3] Drung D, Cantor R, Peters M, Scheer H J and Koch H 1990 Appl. Phys. Lett. 57 406
[4] Seppä H, Ahonen A, Knuutila J, Simola J and Vilkman V 1991 IEEE Trans. Magn. 27 2488
[5] Xie X, Zhang Y, Wang H, Wang Y, Mück M, Dong H, Krause H J, Braginski A I, Offenhäusser A and Jiang M 2010 Supercond. Sci. Technol. 23 065016
[6] Wellstood F C, Urbina C and Clarke J 1987 Appl. Phys. Lett. 50 772
[7] Schmelz M, Stolz R, Zakosarenko V, Schönau T, Anders S, Fritzsch L, Mück M and Meyer H G 2011 Supercond. Sci. Technol. 24 065009
[8] Liu C, Zhang Y, Mück M, Krause H J, Braginski A I, Xie X, Offenhäusser A and Jiang M 2012 Appl. Phys. Lett. 101 222602
[9] Zeng J, Zhang Y, Mück M, Krause H J, Braginski A I, Kong X, Xie X, Offenhäusser A and Jiang M 2013 Appl. Phys. Lett. 103 042601
[10] Liu C, Zhang Y, Mück M, Zhang S, Krause H J Braginski A I, Zhang G, Wang Y, Kong X, Xie X, Offenhäusser A and Jiang M 2013 Supercond. Sci. Technol. 26 065002
[11] Qiu Y, Liu C, Zhang S, Zhang G, Wang Y, Li H, Zeng J, Kong X and Xie X 2014 Chin. Phys. B 23 088503
[12] Zhang Y, Liu C, Schmelz M, Krause H J, Braginski A I, Stolz R, Xie X, Meyer H G, Offenhäusser A and Jiang M 2012 Supercond. Sci. Technol. 25 125007
[13] Zeng J, Zhang Y, Mück M, Krause H J, Braginski A I, Kong X, Xie X, Offenhäusser A and Jiang M 2013 Appl. Phys. Lett. 103 122605
[14] Voss R F 1981 J. Low Temp. Phys. 42 151
[15] Drung D and Jutzi W 1985 IEEE Trans. Magn. 21 430
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[5] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[6] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[7] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[8] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[9] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[12] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[13] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[14] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[15] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
No Suggested Reading articles found!