CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Extraordinary optical transmission through a subwavelength composite hole-pillar array |
Shao Wei-Jia (邵伟佳)a b, Li Wei-Min (李为民)a, Xu Xiao-Liang (许小亮)b, Wang Hui-Jie (王会杰)b, Wu Yi-Zhi (吴以治)b, Yu Jing (郁菁)b |
a National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China; b Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We numerically investigate the transmission properties of a subwavelength composite hole-pillar array. As the radius of the pillar increases, the transmission properties experience a complex evolution. It is found that the magnetic dipole resonance of the pillar suppresses the surface plasmon polariton resonance (SPPR) at the gold-air interface. There are two strong transmission peaks associated with the magnetic dipole resonance of pillar and SPPR at the gold-silica interface. A peak associated with magnetic quadrupole resonance of the pillar is observed. Moreover, there is a weak peak associated with the coupling between the whispering-gallery plasmon (WGP) mode and magnetic dipole. Our work is helpful for making a dual band optical filter.
|
Received: 21 April 2014
Revised: 21 May 2014
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51272246) and the Scientific and Technological Research Foundation of Anhui Province, China (Grant No. 12010202035). |
Corresponding Authors:
Li Wei-Min, Xu Xiao-Liang
E-mail: lwm@ustc.edu.cn;xlxu@ustc.edu.cn
|
Cite this article:
Shao Wei-Jia (邵伟佳), Li Wei-Min (李为民), Xu Xiao-Liang (许小亮), Wang Hui-Jie (王会杰), Wu Yi-Zhi (吴以治), Yu Jing (郁菁) Extraordinary optical transmission through a subwavelength composite hole-pillar array 2014 Chin. Phys. B 23 117301
|
[1] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[2] |
Lalanne P and Hugonin J P 2006 Nat. Phys. 2 551
|
[3] |
Gay G, Alloschery O, Viaris de Lesegno B, O'Dwyer C, Weiner J and Lezec H J 2006 Nat. Phys. 2 262
|
[4] |
Visser T D 2006 Nat. Phys. 2 509
|
[5] |
Wei F F, Wang H Y and Zhou Y S 2013 Chin. Phys. B 22 024201
|
[6] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[7] |
Wang F and Shen Y R 2006 Phys. Rev. Lett. 97 206806
|
[8] |
Klein K K J, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
|
[9] |
Yang J C, Gao H, Suh J Y, Zhou W, Lee M H and Odom T W 2010 Nano Lett. 10 3173
|
[10] |
Ruan Z and Qiu M 2006 Phys. Rev. Lett. 96 233901
|
[11] |
Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W and Ming N B 2008 Phys. Rev. Lett. 101 087401
|
[12] |
Miyamaru F and Takeda M W 2009 Phys. Rev. B 79 153405
|
[13] |
Cakmak A O, Aydin K, Colak E, Li Z, Bilotti F, Vegni L and Ozbay E 2009 Appl. Phys. Lett. 95 052103
|
[14] |
Aydin K, Cakmak A O, Sahin L, Li Z, Bilotti F, Vegni L and Ozbay E 2009 Phys. Rev. Lett. 102 013904
|
[15] |
Xiao S, Peng L and Mortensen N A 2010 Opt. Express 18 6040
|
[16] |
Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I and Chichkov B N 2012 Nano Lett. 12 3749
|
[17] |
García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M and Sáenz J J 2011 Opt. Express 19 4815
|
[18] |
Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K, Ihlefeld J F, Clem P G and Sinclair M B 2012 Phys. Rev. Lett. 108 097402
|
[19] |
Wang C, Gu J, Han J, Xing Q, Tian Z, Liu F, Chai L, Li Y, Hu M, Wang Q, Lu X and Zhang W 2010 Appl. Phys. Lett. 96 251102
|
[20] |
Stolwijk D, Driessen E F C, Verschuuren M A, Hooft G W't, van Exter M P and de Dood M J A 2008 Opt. Lett. 33 363
|
[21] |
Poujet Y, Salvi J and Baida F I 2007 Opt. Lett. 32 2942
|
[22] |
Lu X and Zhang W 2009 Appl. Phys. Lett. 94 181106
|
[23] |
Wu S, Wang Q J, Yin X G, Li J Q, D Zhu, Liu S Q and Zhu Y Y 2008 Appl. Phys. Lett. 93 101113
|
[24] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[25] |
Edwards D F 1985 Handbook of Optical Constants of Solids (Vol. 1) (Orlando, FL: Academic Press) p. 547
|
[26] |
Salomon L, Grillot F, Zayats A V and de Fornel F 2001 Phys. Rev. Lett. 86 1110
|
[27] |
Vesseur E J R, Garciía de Abajo F J and Polman A 2009 Nano Lett. 9 3147
|
[28] |
Staude I, Miroshnichenko A E, Decker M, Fofang N T, Liu S, Gonzales E, Dominguez J, Luk T S, Neshev D N, Brener I and Kivshar Y 2013 ACS Nano 7 7824
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|