CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Polarization dependence of the light coupling to surface plasmons in an Ag nanoparticle & Ag nanowire system |
Yang Chao-Jie (杨超杰)a, Zhao Hua-Bo (赵华波)a, Wang Pei-Pei (王培培)a, Li Jie (李洁)a, Tang Peng (唐鹏)a, Qu Sheng-Chun (曲胜春)b, Lin Feng (林峰)a, Zhu Xing (朱星)a c |
a School of Physics, Peking University, Beijing 100871, China;
b Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
c National Center for Nanoscience and Technology, Beijing 100190, China |
|
|
Abstract Polarization dependence of the coupling of excitation light to surface plasmon polaritons (SPPs) was investigated in a Ag nanoparticle-nanowire waveguide system (a Ag nanoparticle attached to a Ag nanowire). It was found that under the illumination of excitation light on the nanoparticle-nanowire junction, the coupling efficiency of light to SPPs depends on the polarization of the excitation light. Theoretical simulations revealed that it is the local near-field coupling between the nanoparticle and the nanowire that enhances the incident light to excite the nanowire SPPs. Because the shapes of the Ag nanoparticles differ, the local field intensity, and thus the excitement of the nanowire SPPs, vary with the polarization of the excitation light.
|
Received: 25 April 2014
Revised: 16 June 2014
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB933004 and 2007CB936801), the National Natural Science Foundation of China (Grant Nos. 11374023, 61176120, and 60977015), the National Undergraduate Innovational Experimentation Program, China, and the National Fund for Fostering Talents of Basic Science (NFFTBS), China (Grant Nos. J1030310 and J1103205). |
Corresponding Authors:
Lin Feng
E-mail: linf@pku.edu.cn
|
Cite this article:
Yang Chao-Jie (杨超杰), Zhao Hua-Bo (赵华波), Wang Pei-Pei (王培培), Li Jie (李洁), Tang Peng (唐鹏), Qu Sheng-Chun (曲胜春), Lin Feng (林峰), Zhu Xing (朱星) Polarization dependence of the light coupling to surface plasmons in an Ag nanoparticle & Ag nanowire system 2014 Chin. Phys. B 23 117302
|
[1] |
Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phy. Rev. Lett. 95 257403
|
[2] |
Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822
|
[3] |
Lal S, Link S and Halas N J 2007 Nat. Photon. 1 641
|
[4] |
Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
|
[5] |
Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383
|
[6] |
Solis D, Chang W S, Khanal B P, Bao K, Nordlander P, Zubarev E R and Link S 2010 Nano Lett. 10 3482
|
[7] |
Wang W H, Yang Q, Fan F R, Xu H X and Wang Z L 2011 Nano Lett. 11 1603
|
[8] |
Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P and Xu H X 2011 Phy. Rev. Lett. 107 096801
|
[9] |
Kusar P, Gruber C, Hohenau A and Krenn J R 2012 Nano Lett. 12 661
|
[10] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[11] |
Chang W S, Slaughter L S, Khanal B P, Manna P, Zubarev E R and Link S 2009 Nano Lett. 9 1152
|
[12] |
Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
|
[13] |
Ozbay E 2006 Science 311 189
|
[14] |
Liu J T, Xu B Z, Zhang J, Cai L K and Song G F 2012 Chin. Phys. B 21 107303
|
[15] |
Pan P, Wei H and Xu H X 2013 Chin. Phys. B 22 097305
|
[16] |
Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
|
[17] |
Wei H and Xu H X 2012 Nanophotonics 1 155
|
[18] |
Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nat. Commun. 2 387
|
[19] |
Dong C H, Ren X F, Yang R, Duan J Y, Guan J G, Guo G C and Guo G P 2009 Appl. Phys. Lett. 95 221109
|
[20] |
Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515
|
[21] |
Sun Y G, Mayers B, Herricks T and Xia Y N 2003 Nano Lett. 3 955
|
[22] |
Korte K E, Skrabalak S E and Xia Y N 2008 J. Mater. Chem. 18 437
|
[23] |
Wang C, Hu Y J, Lieber C M and Sun S. H 2008 J. Am. Chem. Soc. 130 8902
|
[24] |
Kim F, Sohn K, Wu J S and Huang J X 2008 J. Am. Chem. Soc. 130 14442
|
[25] |
Li X, Wang L and Yan G 2011 Cryst. Res. Technol. 46 427
|
[26] |
Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
|
[27] |
Kenens B, Rybachuk M, Hofkens J and Uji I H 2013 J. Phys. Chem. C 117 2547
|
[28] |
Dickson R M and Lyon L A 2000 J. Phys. Chem. B 104 6095
|
[29] |
Lee P C and Meisel D 1982 J. Phys. Chem. 86 3391
|
[30] |
Hutchison J A, Centeno S P, Odaka H, Fukumura H, Hofkens J and Uji I H 2009 Nano Lett. 9 995
|
[31] |
Laroche T and Girard C 2006 Appl. Phys. Lett. 89 233119
|
[32] |
Jackson J D 1999 Classical Electrodynamics (New York: John Wiley & Sons)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|