CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Radio-frequency transistors from millimeter-scale graphene domains |
Wei Zi-Jun (魏子钧)a, Fu Yun-Yi (傅云义)a, Liu Jing-Bo (刘竞博)b, Wang Zi-Dong (王紫东)a, Jia Yue-Hui (贾越辉)a c, Guo Jian (郭剑)a, Ren Li-Ming (任黎明)a, Chen Yuan-Fu (陈远富)b, Zhang Han (张酣)c, Huang Ru (黄如)a, Zhang Xing (张兴)a |
a Institute of Microelectronics, Peking University, Beijing 100871, China;
b State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Scienceand Technology of China, Chengdu 610054, China;
c School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent electronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum oscillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.
|
Received: 25 March 2014
Revised: 05 May 2014
Accepted manuscript online:
|
PACS:
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
87.50.S-
|
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00600, 2011CBA00601, and 2013CBA01604), the National Natural Science Foundation of China (Grant No. 60625403), and the National Science and Technology Major Project of China (Grant No. 2011ZX02707). |
Corresponding Authors:
Fu Yun-Yi
E-mail: yyfu@pku.edu.cn
|
Cite this article:
Wei Zi-Jun (魏子钧), Fu Yun-Yi (傅云义), Liu Jing-Bo (刘竞博), Wang Zi-Dong (王紫东), Jia Yue-Hui (贾越辉), Guo Jian (郭剑), Ren Li-Ming (任黎明), Chen Yuan-Fu (陈远富), Zhang Han (张酣), Huang Ru (黄如), Zhang Xing (张兴) Radio-frequency transistors from millimeter-scale graphene domains 2014 Chin. Phys. B 23 117201
|
[1] |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
|
[2] |
Novoselov K S A, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 654
|
[4] |
Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, Jessica L M, Taisuke O, Sergey A R, Jonas R, Eli R, Andreas K S, Daniel W, Heiko B W and Thomas S 2009 Nat. Mater. 8 203
|
[5] |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[6] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[7] |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan Y, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
|
[8] |
Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
|
[9] |
Wu Y Q, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W J, Xia F N, Avouris P and Lin Y M 2012 Nano Lett. 12 3062
|
[10] |
Cheng R, Bai J W, Liao L, Zhou H L, Chen Y, Liu L X, Lin Y C, Jiang S, Huang Y and Duan X F 2012 Proc. Nation Acad. Sci. 109 11588
|
[11] |
Guo Z L, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y K, Ruan M, Hankinson J, Kunc J, Cressler J D, Berger C and De Heer W A 2013 Nano Lett. 13 942
|
[12] |
Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
|
[13] |
Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305
|
[14] |
Zhou H L, Yu W J, Liu L X, Cheng R, Chen Y, Huang X Q, Liu Y, Wang Y, Huang Y and Duan X F 2013 Nat. Commun. 4 2096
|
[15] |
Luo B, Liu H T, Jiang L L, Jiang L, Geng D C, Wu B, Hu W Q, Liu Y Q and Yu G 2013 J. Mater. Chem. C 1 2990
|
[16] |
Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoffl R S 2013 Science 342 720
|
[17] |
Liang X L, Sperling B A, Calizo I, Cheng G J, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H L, Li Q L, Zhu X X, Yuan H, Hight Walker A R, Liu Z F, Peng L M and Richter C A 2011 ACS Nano. 5 9144
|
[18] |
Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
|
[19] |
Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
|
[20] |
Lin Y M, Jenkins K, Farmer D, Valdes-Garcia A, Avouris P, Sung C Y, Chiu H Y and Ek B 2009 IEEE International Electron Devices Meeting (IEDM), December 2009 New York, USA, pp. 1-4
|
[21] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[22] |
Joshi P, Romero H E, Neal A T, Toutam V K and Tadigadapa S A 2010 J. Phys: Condens. Matter 22 334214
|
[23] |
Venugopal A, Colombo L and Vogel E M 2010 Appl. Phys. Lett. 96 013512
|
[24] |
Liu W J, Li M F, Xu S H, Zhang Q, Zhu Y H, Pey K L, Hu H L, Shen Z X, Zou X, Wang J L, Wei J, Zhu H L and Yu H Y 2010 IEEE International Electron Devices Meeting (IEDM), December 2010 San Francisco, CA, p. 23.3.1
|
[25] |
Ji X, Zhang J, Wang Y, Qian H and Yu Z 2013 Phys. Chem. Chem. Phys. 15 17883
|
[26] |
Xia F N, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotech. 6 179
|
[27] |
Chen Z and Appenzeller J 2008 IEEE International Electron Devices Meeting (IEDM), December 2008 San Francisco, CA, pp. 1-4
|
[28] |
Chen K, Wan X, Liu D Q, Kang Z W, Xie W G, Chen J, Miao Q and Xu J B 2013 Nanoscale 5 5784
|
[29] |
Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W and Whang D 2014 Science 344 2014
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|