Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 113701    DOI: 10.1088/1674-1056/23/11/113701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Enhancement of electromagnetically induced transparency cooling by an optical cavity

Zhang Jie (张杰)a, Zhang Shuo (张硕)a, Ou Bao-Quan (欧保全)a, Wu Wei (吴伟)a b, Chen Ping-Xing (陈平形)a b
a Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China;
b State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  

We theoretically investigate an enhanced electromagnetically induced transparency (EIT) cooling method by introducing a high finesse cavity. We find that the quantum destructive interference that is induced by the EIT effect and the cavity coupling can eliminate all of the heating effects in the cooling process by choosing appropriate parameters. Compared with the EIT cooling scheme, a lower final temperature can be obtained under the same conditions in our scheme.

Keywords:  electromagnetically induced transparency cooling      quantum interference      high finesse cavity  
Received:  09 May 2014      Revised:  20 July 2014      Accepted manuscript online: 
PACS:  37.10.De (Atom cooling methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304387 and 61205108).

Corresponding Authors:  Chen Ping-Xing     E-mail:  pxchen@nudt.edu.cn

Cite this article: 

Zhang Jie (张杰), Zhang Shuo (张硕), Ou Bao-Quan (欧保全), Wu Wei (吴伟), Chen Ping-Xing (陈平形) Enhancement of electromagnetically induced transparency cooling by an optical cavity 2014 Chin. Phys. B 23 113701

[1] Leibfried D, Blatt R, Monroe C and Wineland D J 2003 Rev. Mod. Phys. 75 281
[2] Odom B, Hanneke D, D'Urso B and Gabrielse G 2006 Phys. Rev. Lett. 97 030801
[3] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801
[4] Wang B, Lü D S, Qu Q Z, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063701
[5] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[6] Jiang Z and Chen P X 2012 Acta Phys. Sin. 61 014209 (in Chinese)
[7] Cirac J I, Blatt R and Zoller P 1992 Phys. Rev. A 46 2668
[8] Lindberg M and Javanainen J 1986 J. Opt. Soc. Am. B 3 1008
[9] Li G H and Xu X Y 2011 Chin. Phys. Lett. 28 63203
[10] Zhang S, Wu C W and Chen P X 2012 Phys. Rev. A 85 053420
[11] Dum R, Marte P, Pellizzari T and Zoller P 1994 Phys. Rev. Lett. 73 2829
[12] Cerrillo J, Retzker A and Plenio M B 2010 Phys. Rev. Lett. 104 043003
[13] Poulsen G, Miroshnychenko Y and Drewsen M 2012 Phys. Rev. A 86 051402
[14] Zhang J Q, Li Y and Feng M 2013 J. Phys.: Condens. Matter 25 142201
[15] Marzoli I, Cirac J I, Blatt R and Zoller P 1994 Phys. Rev. A 49 2771
[16] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P L 1995 Phys. Rev. Lett. 75 4011
[17] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[18] Morigi G, Eschner J and Keitel Ch 2000 Phys. Rev. Lett. 85 4458
[19] Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547
[20] Cerrillo J, Retzker A and Plenio M B 2010 Phys. Rev. Lett. 104 043003
[21] Evers J and Keitel C H 2007 EPL 68 370
[22] Kampschulte T, Alt W, Manz S, Martinez-Dorantes M, Rene R, Yoon S, Meschede D, Marc B and Giovanna M 2014 Phys. Rev. A 89 033404
[23] Zippilli S and Morigi G 2005 Phys. Rev. Lett. 95 143001
[24] Zhang J Q, Zhang S, Zou J H, Chen L, Yang W, Li Y and Feng M 2013 Opt. Express 21 29695
[25] Zippilli S and Morigi G 2005 Phys. Rev. A 72 053408
[26] Cirac J I, Lewenstein M and Zoller P 1995 Phys. Rev. A 51 1650
[27] Zippilli S, Morigi G and Schleich W P 2007 J. Mod. Opt. 54 1595
[28] Bienert M and Morigi G 2012 New J. Phys. 14 023002
[29] Bienert M and Morigi G 2012 Phys. Rev. A 86 053402
[30] Zhang S, Duan Q H, Guo C, Wu C W, Wu W and Chen P X 2014 Phys. Rev. A 89 013402
[31] Meng Y L, Cheng H D and Zheng B C 2013 Chin. Phys. Lett. 30 063701
[32] Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature 428 50
[33] Leibrandt D R, Labaziewicz J, Vuleti V and Chuang I L 2009 Phys. Rev. Lett. 103 103001
[34] Wolke M, Klinner J, Keler H and Hemmerich A 2012 Science 337 75
[35] Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
[36] Blakea T, Kurcza A and Beigea A 2011 J. Mod. Opt. 58 1317
[37] Yi Z, Gu W J and Li G X 2013 Opt. Express 21 3345
[38] Vuletic V, Chan H W and Black A T 2001 Phys. Rev. A 64 033405
[39] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interaction (New York: Wiley)
[40] Roos C F 2000 Controlling the Quantum State of Trapped Ions (Ph.D. dissertation) (Innsbruck: University of Innsbruck)
[41] Stenholm S 1986 Rev. Mod. Phys. 58 699
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!