|
|
Enhancement of electromagnetically induced transparency cooling by an optical cavity |
Zhang Jie (张杰)a, Zhang Shuo (张硕)a, Ou Bao-Quan (欧保全)a, Wu Wei (吴伟)a b, Chen Ping-Xing (陈平形)a b |
a Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China;
b State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract We theoretically investigate an enhanced electromagnetically induced transparency (EIT) cooling method by introducing a high finesse cavity. We find that the quantum destructive interference that is induced by the EIT effect and the cavity coupling can eliminate all of the heating effects in the cooling process by choosing appropriate parameters. Compared with the EIT cooling scheme, a lower final temperature can be obtained under the same conditions in our scheme.
|
Received: 09 May 2014
Revised: 20 July 2014
Accepted manuscript online:
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304387 and 61205108). |
Corresponding Authors:
Chen Ping-Xing
E-mail: pxchen@nudt.edu.cn
|
Cite this article:
Zhang Jie (张杰), Zhang Shuo (张硕), Ou Bao-Quan (欧保全), Wu Wei (吴伟), Chen Ping-Xing (陈平形) Enhancement of electromagnetically induced transparency cooling by an optical cavity 2014 Chin. Phys. B 23 113701
|
[1] |
Leibfried D, Blatt R, Monroe C and Wineland D J 2003 Rev. Mod. Phys. 75 281
|
[2] |
Odom B, Hanneke D, D'Urso B and Gabrielse G 2006 Phys. Rev. Lett. 97 030801
|
[3] |
Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801
|
[4] |
Wang B, Lü D S, Qu Q Z, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063701
|
[5] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[6] |
Jiang Z and Chen P X 2012 Acta Phys. Sin. 61 014209 (in Chinese)
|
[7] |
Cirac J I, Blatt R and Zoller P 1992 Phys. Rev. A 46 2668
|
[8] |
Lindberg M and Javanainen J 1986 J. Opt. Soc. Am. B 3 1008
|
[9] |
Li G H and Xu X Y 2011 Chin. Phys. Lett. 28 63203
|
[10] |
Zhang S, Wu C W and Chen P X 2012 Phys. Rev. A 85 053420
|
[11] |
Dum R, Marte P, Pellizzari T and Zoller P 1994 Phys. Rev. Lett. 73 2829
|
[12] |
Cerrillo J, Retzker A and Plenio M B 2010 Phys. Rev. Lett. 104 043003
|
[13] |
Poulsen G, Miroshnychenko Y and Drewsen M 2012 Phys. Rev. A 86 051402
|
[14] |
Zhang J Q, Li Y and Feng M 2013 J. Phys.: Condens. Matter 25 142201
|
[15] |
Marzoli I, Cirac J I, Blatt R and Zoller P 1994 Phys. Rev. A 49 2771
|
[16] |
Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P L 1995 Phys. Rev. Lett. 75 4011
|
[17] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[18] |
Morigi G, Eschner J and Keitel Ch 2000 Phys. Rev. Lett. 85 4458
|
[19] |
Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547
|
[20] |
Cerrillo J, Retzker A and Plenio M B 2010 Phys. Rev. Lett. 104 043003
|
[21] |
Evers J and Keitel C H 2007 EPL 68 370
|
[22] |
Kampschulte T, Alt W, Manz S, Martinez-Dorantes M, Rene R, Yoon S, Meschede D, Marc B and Giovanna M 2014 Phys. Rev. A 89 033404
|
[23] |
Zippilli S and Morigi G 2005 Phys. Rev. Lett. 95 143001
|
[24] |
Zhang J Q, Zhang S, Zou J H, Chen L, Yang W, Li Y and Feng M 2013 Opt. Express 21 29695
|
[25] |
Zippilli S and Morigi G 2005 Phys. Rev. A 72 053408
|
[26] |
Cirac J I, Lewenstein M and Zoller P 1995 Phys. Rev. A 51 1650
|
[27] |
Zippilli S, Morigi G and Schleich W P 2007 J. Mod. Opt. 54 1595
|
[28] |
Bienert M and Morigi G 2012 New J. Phys. 14 023002
|
[29] |
Bienert M and Morigi G 2012 Phys. Rev. A 86 053402
|
[30] |
Zhang S, Duan Q H, Guo C, Wu C W, Wu W and Chen P X 2014 Phys. Rev. A 89 013402
|
[31] |
Meng Y L, Cheng H D and Zheng B C 2013 Chin. Phys. Lett. 30 063701
|
[32] |
Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature 428 50
|
[33] |
Leibrandt D R, Labaziewicz J, Vuleti V and Chuang I L 2009 Phys. Rev. Lett. 103 103001
|
[34] |
Wolke M, Klinner J, Keler H and Hemmerich A 2012 Science 337 75
|
[35] |
Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
|
[36] |
Blakea T, Kurcza A and Beigea A 2011 J. Mod. Opt. 58 1317
|
[37] |
Yi Z, Gu W J and Li G X 2013 Opt. Express 21 3345
|
[38] |
Vuletic V, Chan H W and Black A T 2001 Phys. Rev. A 64 033405
|
[39] |
Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interaction (New York: Wiley)
|
[40] |
Roos C F 2000 Controlling the Quantum State of Trapped Ions (Ph.D. dissertation) (Innsbruck: University of Innsbruck)
|
[41] |
Stenholm S 1986 Rev. Mod. Phys. 58 699
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|