Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 108101    DOI: 10.1088/1674-1056/23/10/108101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influences of anionic and cationic dopants on the morphology andoptical properties of PbS nanostructures

Ramin Yousefia, Mohsen Cheragizadeb, Farid Jamali-Sheinic, M. R. Mahmoudiand, Abdolhossein Saaédib, Nay Ming Huange
a Depertment of Physics, Masjed-Soleiman Branch, Islamic Azad University (I. A. U.), Masjed-Soleiman, Iran;
b Department of Electrical Engineering, Bushehr Branch, Islamic Azad University (I. A. U.), Bushehr, Iran;
c Department of Physics, Ahwaz Branch, Islamic Azad University, Ahwaz, Iran;
d Department of Chemistry, Shahid Sherafat, University of Farhangian, 15916 Tehran, Iran;
e Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract  Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples confirm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanostructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.
Keywords:  PbS nanostructures      anionic dopant      cationic dopant      thermal evaporation      optical properties  
Received:  15 January 2014      Revised:  20 April 2014      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  61.72.uf (Ge and Si)  
  61.72.uj (III-V and II-VI semiconductors)  
  78.55.-m (Photoluminescence, properties and materials)  
Corresponding Authors:  Ramin Yousefi     E-mail:  yousefi.ramin@gmail.com,_raminyousefi@iaumis.ac.ir
About author:  81.15.Gh; 61.72.uf; 61.72.uj; 78.55.-m

Cite this article: 

Ramin Yousefi, Mohsen Cheragizade, Farid Jamali-Sheini, M. R. Mahmoudian, Abdolhossein Saaédi, Nay Ming Huang Influences of anionic and cationic dopants on the morphology andoptical properties of PbS nanostructures 2014 Chin. Phys. B 23 108101

[1]Bakueva L, Konstantatos G, Levina L, Musikhin S and Sargent E H 2004 Appl. Phys. Lett. 84 3459
[2]Ortuno-Lopez M B, Valenzuela-Jauregui J J, Ramirez-Bon R, Prokhorov E and Gonzalez-Hernandez J 2002 J. Phys. Chem. Solids 63 665
[3]Kumar S, Sharma T P, Zulfequar M and Husain M 2003 Physica B 325 8
[4]Liu C, Heo J, Zhang X and Adam J L 2008 J. Non-Cryst. Solids 354 618
[5]Wei H, Chen S, Ren X, Qian B, Su Y, Yang Z and Zhang Y 2012 Cryst. Eng. Comm. 14 7408
[6]Rajen Singh L, Bobby Singh S and Rahman A 2013 Chalcogenide Letters 10 167
[7]He X, Demchenko I N, Stolte W C, Van Buuren A and Liang H 2012 J. Phys. Chem. C 116 22001
[8]He J, Blum I D, Wang H Q, Girard S N, Doak J, Zhao LD, Zheng J C, Casillas G, Wolverton C, Jose-Yacaman M, Seidman D N, Kanatzidis M G and Dravid V P 2012 Nano Lett. 12 5979
[9]Long G, Barman B, Delikanli S, Tsai Y T, Zhang P, Petrou A and Zeng H 2012 Appl. Phys. Lett. 101 062410
[10]Das R and Kumar R 2012 Mater. Res. Bull. 47 239
[11]Thangavel S, Ganesan S and Saravanan K 2012 Thin Solid Films 520 5206
[12]He X, Demchenko I N, Stolte W C, Buuren A V and Liang H 2012 Phys. Chem. C 116 22001
[13]Cheraghizade M, Yousefi R, Jamali-Sheini F, Saáedi A and Huang N M 2014 Mat. Sci. Semicond. Proc. 21 98
[14]Law M, Luther J M, Song Q, Hughes B K, Perkins C L and Nozik A J 2008 J. Am. Chem. Soc. 130 5974
[15]Laihia R, Leiro J A, Kokko K and Mansikka K 1996 J. Phys.: Condens. Matter 8 6791
[16]Ge J P, Wang J, Zhang H X, Wang X, Peng Q and Li Y D 2005 Chem. Eur. J. 11 1889
[17]Smith G D, Firth S, Clark R J H and Cardona M 2002 J. Appl. Phys. 92 4375
[18]Xiong S, Xi B, Xu D, Wang C, Feng X, Zhou H and Qian Y 2007 J. Phys. Chem. C 111 16761
[19]Khorsand Zak A, Abd Majid W H, Mahmoudian M R, Darroudi M and Yousefi R 2013 Adv. Powder Technol. 24 618
[20]Cao H, Wang G, Zhang S and Zhang X 2006 Nanotechnology 17 3280
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[11] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!