Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090203    DOI: 10.1088/1674-1056/23/9/090203
GENERAL Prev   Next  

Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection

H. M. El-Hawarya, Mostafa A. A. Mahmoudb, Reda G. Abdel-Rahmanb, Abeer S. Elfeshaweyb
a Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt;
b Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt
Abstract  The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two-parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge-Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.
Keywords:  non-Newtonian fluid      stagnation point      two-parameter group method      variable viscosity  
Received:  28 October 2013      Revised:  28 March 2014      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.60.Cb (Numerical simulation; solution of equations)  
  31.15.xh (Group-theoretical methods)  
  44.2.+b  
Corresponding Authors:  Abeer S. Elfeshawey     E-mail:  abeer_elfeshawey@yahoo.com

Cite this article: 

H. M. El-Hawary, Mostafa A. A. Mahmoud, Reda G. Abdel-Rahman, Abeer S. Elfeshawey Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection 2014 Chin. Phys. B 23 090203

[1] Schowalter W R 1960 AIChE J. 6 24
[2] Astarita G and Marrucci G 1974 Principles of non-Newtonian Fluid Mechanics (London: McGraw-Hill)
[3] Schowalter W R 1978 Mechanics of non-Newtonian Fluids (Oxford: Pergamon Press)
[4] Crochet M J, Davies A R and Walters K 1984 Numerical Simulation of non-Newtonian Flow (Amsterdam: Elsevier)
[5] Bird R B, Armstrong R C and Hassager O 1987 Dynamics of Polymeric Liquids, Fluid Mechanics (vol. 1, 2nd edn.) (New York: Wiley)
[6] Gupta A S, Misra J C and Reza M 2003 Fluid Dyn. Res. 32 283
[7] Zhang Z and Wang J 2007 Z. Angew. Math. Phys. 58 805
[8] Olajuwon B I 2007 Int. J. Dyn. Fluid. 3 1
[9] Soundalgekar V M, Murty T V R and Takhar H S 1990 Indian J. Appl. Math. 21 384
[10] Labropulu F 2005 Proceedings of the 3rd IASME/WSEAS International Conference on Fluid Dynamics and Aerodynamics, August 20-22, 2005 Corfu, Greece, p. 230
[11] Fang T, Lee C F and Zhang 2011 J. Int. J. Non-Linear Mech. 46 942
[12] Xu H, Liao S and Pop I 2006 J. Non-Newtonian Fluid Mech. 139 31
[13] Chin K E, Nazar R, Arifin N M and Pop I 2007 Int. Commun. Heat Mass Tran. 34 464
[14] Hassanien I A and Al-arabi T H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 1366
[15] Mahmoud M A A and Megahed A M 2009 Can. J. Phys. 87 1065
[16] Abel M S, Datti P S and Mahesha N 2009 Int. J. Heat Mass Transfer 52 2902
[17] Li B, Zheng L and Zhang X 2011 Energy Conversion and Management 52 355
[18] Moran M J and Gaggioli R A 1969 J. Eng. Math. 3 151
[19] Chen C H 2003 Heat and Mass Transfer 39 791
[20] Frank M W 1991 Viscous Fluid Flow (2nd edn.) (New York: McGraw-Hill)
[21] Yih K A 1998 Acta Mech. 130 147
[22] Tsai R and Huang J S 2009 Int. J. Heat Mass Trans. 52 2399
[23] He J H 2006 Phys. Lett. A 350 87
[24] Ezzati R and Aqhamohamadi M 2009 Int. J. Industrial Math. 1 351
[25] Muhammad A N, Khalida I N, Muhammad R, Eisa A and John C 2011 Int. J. Phys. Sci. 6 4128
[26] Megahed A M Eur. Phys. J. Plus 126 82
[27] He J H 2012 Abstract and Applied Analysis
[1] Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface
S. Nadeem, Rashid Mehmood, Noreen Sher Akbar. Chin. Phys. B, 2015, 24(1): 014702.
[2] Existence of a Hartmann layer in the peristalsis of Sisko fluid
Saleem Asghar, Tayyaba Minhas, Aamir Ali. Chin. Phys. B, 2014, 23(5): 054702.
[3] Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation
A. M. Salem and Rania Fathy . Chin. Phys. B, 2012, 21(5): 054701.
No Suggested Reading articles found!