Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097504    DOI: 10.1088/1674-1056/23/9/097504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Micromagnetic simulation of Sm-Co/α-Fe/Sm-Co trilayers with various angles between easy axes and the film plane

Zhang Xi-Chao (张溪超)a, Zhao Guo-Ping (赵国平)a, Xia Jing (夏静)a, Yue Ming (岳明)b, Yuan Xin-Hong (袁新红)a, Xie Lin-Hua (谢林华)a
a College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China;
b College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  Hysteresis loops and energy products have been calculated systematically by a three-dimensional (3D) software OOMMF for Sm-Co/α-Fe/Sm-Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy. Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional (1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.
Keywords:  micromagnetic simulation      hard/soft trilayers      hysteresis loops      magnetization configuration  
Received:  16 February 2014      Revised:  13 March 2014      Accepted manuscript online: 
PACS:  75.60.Jk (Magnetization reversal mechanisms)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.50.Ss (Magnetic recording materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179, 10747007, 51331003, 51371011, and 51001002), the State Key Development Program of Basic Research of China (Grant No. 2010CB934600), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Beijing Municipal Natural Science Foundation, China (Grant No. 2122006), and Scientific Research Innovation Fund for Student in Sichuan Normal University, China.
Corresponding Authors:  Zhao Guo-Ping     E-mail:  zhaogp@uestc.edu.cn;_zapple2004@yahoo.com

Cite this article: 

Zhang Xi-Chao (张溪超), Zhao Guo-Ping (赵国平), Xia Jing (夏静), Yue Ming (岳明), Yuan Xin-Hong (袁新红), Xie Lin-Hua (谢林华) Micromagnetic simulation of Sm-Co/α-Fe/Sm-Co trilayers with various angles between easy axes and the film plane 2014 Chin. Phys. B 23 097504

[1] Kneller E F and Hawig R 1991 IEEE Trans. Magn. 27 3588
[2] Shindo M, Ishizone M, Sakuma A, Kato H and Miyazaki T 1997 J. Appl. Phys. 81 4444
[3] Sabiryanov R F and Jaswal S S 1998 Phys. Rev. B 58 12071
[4] Liu J P, Liu Y, Skomski R and Sellmyer D J 1999 IEEE Trans. Magn. 35 3241
[5] Skomski R, Liu J P and Sellmyer D J 1999 Phys. Rev. B 60 7359
[6] Guo Z J, Jiang J S, Pearson J E, Bader S D and Liu J P 2002 Appl. Phys. Lett. 81 2029
[7] Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K and Sellmyer D J 2002 Adv. Mater. 14 1832
[8] Choi Y, Jiang J S, Pearson J E, Bader S D, Kavich J J, Freeland J W and Liu J P 2007 Appl. Phys. Lett. 91 072509
[9] Liu Y, Wu Y Q, Kramer M J, Choi Y, Jiang J S, Wang Z L and Liu J P 2008 Appl. Phys. Lett. 93 192502
[10] Hou H C, Liao J W, Lin M S, Lin H J, Chang F H, Chen R Z, Chiu C H and Lai C H 2011 J. Appl. Phys. 109 07C104
[11] Amato M, Pini M G and Rettori A 1999 Phys. Rev. B 60 3414
[12] Fang W and Hong X X 2014 Chin. Phys. B 23 036802
[13] Jia L Y, Yin J H and Ma X Q 2014 Chin. Phys. B 23 027501
[14] Wang Y, Wang R, Xie H L, Bai J M and Wei F L 2013 Chin. Phys. B 22 68506
[15] Papusoi C, Srinivasan K and Acharya R 2011 J. Appl. Phys. 110 083908
[16] Poudyal N and Liu J P 2013 J. Phys. D: Appl. Phys. 46 043001
[17] Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812
[18] Kopte M, Sawatzki S, Schultz L and Neu V 2011 IEEE Trans. Magn. 47 3736
[19] Alexandrakis V, Niarchos D, Tsiaoussis I and Panagiotopoulos I 2008 J. Magn. Magn. Mater. 320 1020
[20] Rong C B, Zhang Y, Kramer M J and Liu J P 2011 Phys. Lett. A 375 1329
[21] Cui W B, Takahashi Y K and Hono K 2012 Adv. Mater. 24 6530
[22] Knutson S J, Shen Y, Horwath J C, Barnes P and Chen C H 2011 J. Appl. Phys. 109 07A762
[23] Yuan F T, Hsiao S N, Liao W M, Chen S K and Yao Y D 2006 J. Appl. Phys. 99 08E915
[24] Tang J, Yang L R, Wang X J, Zhang L, Wei C F, Chen B W and Mei Y 2012 Acta Phys. Sin. 61 240701 (in Chinese)
[25] Asti G, Solzi M, Ghidini M and Neri F M 2004 Phys. Rev. B 69 174401
[26] Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S and Pareti L 2006 Phys. Rev. B 73 094406
[27] Zhao G P and Wang X L 2006 Phys. Rev. B 74 012409
[28] Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
[29] Belemuk A M and Chui S T 2011 J. Appl. Phys. 109 093909
[30] Xia J, Zhao G P, Zhang H W, Cheng Z H, Feng Y P, Ding J and Yang H T 2012 J. Appl. Phys. 112 013918
[31] Belemuk A M and Chui S T 2011 J. Appl. Phys. 110 073918
[32] Li L L and Bao J C 2011 Chin. Phys. B 20 127502
[33] Sawatzki S, Heller R, Mickel C, Seifert M, Schultz L and Neu V 2011 J. Appl. Phys. 109 123922
[34] Zhang J, Takahashi Y K, Gopalan R and Hono K 2005 Appl. Phys. Lett. 86 122509
[35] Donahue M J and Porter D G 1999 OOMMF user's guide, version 1.0. NISTIR 6376 National Institute of Standards and Technology, Gaithersburg, MD
[36] Brown W F, Jr 1945 Rev. Mod. Phys. 17 15
[37] Fullerton E E, Jiang J S, Grimsditch M, Sowers C H and Bader S D 1998 Phys. Rev. B. 58 12193
[38] Hillebrands B and Ounadjela K 2003 Spin Dynamics in Confined Magnetic Structures II (Berlin: Springer)
[39] Stoner E C and Wohlfarth E P 1948 Phil. Trans. R. Soc. 240 599
[40] At the remanent state, all the magnetizations orient at the easy axis direction, with the remanence given by: Mr=(LhMsh+ LsMSs/2)cosβ/(Lh+Ls/2)
[41] Chen B Z, Zhao G P, Zhang H W and Zhong Z Y 2012 Physica B: Conden. Matter 407 4574
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[3] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[4] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[5] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[6] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[7] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[8] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[9] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[10] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[11] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[12] Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi. Chin. Phys. B, 2017, 26(12): 127501.
[13] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[14] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[15] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
No Suggested Reading articles found!