CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Organic magnetoresistance based on hopping theory |
Yang Fu-Jiang (杨福江), Xie Shi-Jie (解士杰) |
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.
|
Received: 26 December 2013
Revised: 05 March 2014
Accepted manuscript online:
|
PACS:
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
72.20.Ee
|
(Mobility edges; hopping transport)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923402), the National Natural Science Foundation of China (Grant Nos. 11174181 and 21161160445), and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B13029). |
Corresponding Authors:
Xie Shi-Jie
E-mail: xsj@sdu.edu.cn
|
Cite this article:
Yang Fu-Jiang (杨福江), Xie Shi-Jie (解士杰) Organic magnetoresistance based on hopping theory 2014 Chin. Phys. B 23 097306
|
[1] |
Dediu V, Murgia M, Matacotta F C, Taliani C and Barbanera S 2002 Solid State Commun. 122 181
|
[2] |
Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821
|
[3] |
Chen B B, Jiang S W, Ding H F, Jiang Z S and Wu D 2014 Chin. Phys. B 23 018104
|
[4] |
Ren J F, Zhang Y B and Xie S J 2007 Acta Phys. Sin. 56 4785 (in Chinese)
|
[5] |
Yin S, Min W J, Gao K, Xie S J and Liu D S 2011 Chin. Phys. B 20 127201
|
[6] |
Davis A H and Bussmann K 2004 J. Vac. Sci. Technol. A 22 1885
|
[7] |
Francis T L, Mermer Ö, Veeraraghavan G and Wohlgenannt M 2004 New J. Phys. 6 185
|
[8] |
Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Kohler A, Al-Suti M K and Khan M S 2005 Phys. Rev. B 72 205202
|
[9] |
Shakya P, Desai P, Somerton M, Gannaway G, Kreouzis T and Gillin W P 2008 J. Appl. Phys. 103 103715
|
[10] |
Martin J L, Bergeson J D, Prigodin V N and Epstein A J 2010 Synth. Met. 160 291
|
[11] |
Kang H, Park C H, Lim J, Lee C, Kang W and Yoon C S 2012 Org. Electron. 13 1012
|
[12] |
Wang F J, Bässler H and Vardeny Z V 2008 Phys. Rev. Lett. 101 236805
|
[13] |
Bloom F L, Wagemans W and Koopmans B 2008 J. Appl. Phys. 103 07F320
|
[14] |
Bergeson J D, Prigodin V N, Lincoln D M and Epstein A J 2008 Phys. Rev. Lett. 100 067201
|
[15] |
Kang H, Lee I J and Yoon C S 2012 Appl. Phys. Lett. 100 073302
|
[16] |
Hu B and Wu Y 2007 Nat. Mater. 6 985
|
[17] |
Desai P, Shakya P, Kreouzis T and Gillin W P 2007 J. Appl. Phys. 102 073710
|
[18] |
Bloom F L, Wagemans W, Kemerink M and Koopmans B 2007 Phys. Rev. Lett. 99 257201
|
[19] |
Prigodin V N, Bergeson J D, Lincoln D M and Epstein A J 2006 Synth. Met. 156 757
|
[20] |
Desai P, Shakya P, Kreouzis T and Gillin W P 2007 Phys. Rev. B 75 094423
|
[21] |
Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B and Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801
|
[22] |
Kersten S P, Meskers S C J and Bobbert P A 2012 Phys. Rev. B 86 045210
|
[23] |
Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S and Scherf U 2006 Phys. Rev. B 74 045213
|
[24] |
Ding B F, Yao Y, Sun Z Y, Wu C Q, Gao X D, Wang Z J, Ding X M, Choy W C H and Hou X Y 2010 Appl. Phys. Lett. 97 163302
|
[25] |
Veeraraghavan G, Nguyena T D, Sheng Y, Mermer Ö and Wohlgenannt M 2007 J. Phys.: Condens. Matter 19 036209
|
[26] |
Li X X, Dong X F, Lei J, Xie S J and Saxena A 2012 Appl. Phys. Lett. 100 142408
|
[27] |
Harmon N J and FlattéM E 2012 Phys. Rev. Lett. 108 186602
|
[28] |
Yu Z G, Smith D L, Saxena A, Martin R L and Bishop A R 2000 Phys. Rev. Lett. 84 721
|
[29] |
Yu Z G, Smith D L, Saxena A, Martin R L and Bishop A R 2001 Phys. Rev. B 63 085202
|
[30] |
Pasveer W F, Cottaar J, Tanase C, Coehoorn R, Bobbert P A, Blom P W M, de Leeuw D M and Michels M A J 2005 Phys. Rev. Lett. 94 206601
|
[31] |
Marcus R A 1993 Rev. Mod. Phys. 65 599
|
[32] |
Blom P W M, de Jong M J M and van Munster M G 1997 Phys. Rev. B 55 R656
|
[33] |
Nguyen T D, Markosian G H, Wang F, Wojcik L, Li X G, Ehrenfreund E and Vardeny Z V 2010 Nat. Mater. 9 345
|
[34] |
Qin W, Yin S, Gao K and Xie S J 2012 Appl. Phys. Lett. 100 233304
|
[35] |
Qin W, Zhang Y B and Xie S J 2010 Acta Phys. Sin. 59 3494 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|