Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087701    DOI: 10.1088/1674-1056/23/8/087701
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Rational doping for zinc oxide and its influences on morphology and optical properties

Xia Yu-Jing (夏玉静)a b, Guan Zi-Sheng (管自生)b, He Tao (贺涛)a
a National Center for Nanoscience and Technology, Beijing 100190, China;
b College of Materials Science and Technology, Nanjing University of Technology, Nanjing 210009, China
Abstract  Zinc oxide (ZnO) nanopowders doped with different metal ions (Me, Me = Sn4+, In3+, Mn2+, and Co2+) are prepared by a simple sol-gel method. Influences of the ion doping on morphology and optical properties of the resulting ZnxMeyO are investigated by scanning electron microscopy, X-ray diffraction, UV-vis absorption spectrum, and photoluminescence. The morphology of ZnO can be tailored by ion doping, which is closely related not only to the ionic radii and electronegativities of the doped ions, but also to their oxidation states and electron configurations. The optical band gap and photoluminescence of ZnO can also be modulated by ion doping, which results from a combination of different effects, Burstein-Moss, band tail, charge compensation, sp-d exchange, non-radiative recombination, and blocking barrier. This may offer us a viable approach to tuning the (optical) properties of ZnO-based materials via rational ion doping.
Keywords:  zinc oxide      sol-gel chemistry      optical properties      luminescence  
Received:  04 September 2013      Revised:  14 March 2014      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.60.Lc (Optically stimulated luminescence)  
  81.20.Fw (Sol-gel processing, precipitation)  
Corresponding Authors:  Guan Zi-Sheng, He Tao     E-mail:  zishengguan@163.com;het@nanoctr.cn

Cite this article: 

Xia Yu-Jing (夏玉静), Guan Zi-Sheng (管自生), He Tao (贺涛) Rational doping for zinc oxide and its influences on morphology and optical properties 2014 Chin. Phys. B 23 087701

[1] Özgur Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[2] Wang Z L 2004 J. Phys.: Condens. Matter 16 R829
[3] Li L J, Yu K, Wang Y and Zhu Z Q 2010 Appl. Surf. Sci. 256 3361
[4] Holmelund E, Schou J, Tougaard S and Larsen N B 2002 Appl. Surf. Sci. 197-198 467
[5] Ben Yaacov T, Ive T, van de Walle C G, Mishra U K, Speck J S and Denbaars S P 2010 J. Electron. Mater. 39 608
[6] Kima Y S and Tai W P 2007 Appl. Surf. Sci. 253 4911
[7] Gaspera E D, Bersani M, Cittadini M, Guglielmi M, Pagani D, Noriega R, Mehra S, Salleo A and Martucci A 2013 J. Am. Chem. Soc. 135 3439
[8] Buonsanti R, Llordes A, Aloni S, Helms B A and Milliron D J 2011 Nano Lett. 11 4706
[9] Kuo S Y, Chen W C, Lai F I, Cheng C P, Kuo H C, Wang S C and Hsieh W F 2006 J. Cryst. Growth 287 78
[10] Ratana T, Amornpitoksuk P, Ratana T and Suwanboon S 2009 J. Alloys Compd. 470 408
[11] Ahmad M, Zhao J, Iqbal J, Miao W, Xie L, Mo R and Zhu J 2009 J. Phys. D: Appl. Phys. 42 165406
[12] Bhosle V, Prater J T, Yang F, Burk D, Forrest S R and Narayan J 2007 J. Appl. Phys. 102 023501
[13] Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H and Niki S 2003 Thin Solid Films 431-432 369
[14] Straumal B, Mazilkin A, Protasova S, Myatiev A, Straumal P, Goering E and Baretzky B 2011 Phys. Stat. Sol. B 248 1581
[15] Straumal B B, Mazilkin A A, Protasova S G, Myatiev A A, Straumal P B, Goering E and Baretzky B 2011 Thin Solid Films 520 1192
[16] Wu D W, Huang Z B, Yin G F, Yao Y D, Liao X M, Han D, Huang X and Gu J W 2010 Cryst. Eng. Comm. 12 192
[17] Park J H, Kim M G, Jang H M, Ryu S and Kim Y M 2004 Appl. Phys. Lett. 84 1338
[18] Janisch R, Gopal P and Spaldin N A 2005 J. Phys.: Condens. Matter 17 657
[19] Pan F, Song C, Liu X J, Yang Y C and Zeng F 2008 Mater. Sci. Eng. R 62 1
[20] Singh S and Rao M S R 2009 Phys. Rev. B 80 045210
[21] Djurisic A B and Leung Y H 2006 Small 2 944
[22] Djurisic A B, Ng A M C and Chen X Y 2010 Prog. Quantum Electron. 34 191
[23] Maensiri S, Sreesongmuang J, Thomas C and Klinkaewnarong J 2006 J. Magn. Magn. Mater. 301 422
[24] Cullity B D 1978 Elements of X-Ray Diffraction, 2nd edn. (London: Addison-Wesley Publishing Company Inc.)
[25] Yang J, Lee J, Im K and Lim S 2009 Physica E 42 51
[26] Chattopadhyay S, Dutta S, Banerjee A, Janaa D, Bandyopadhyay S, Chattopadhyay S and Sarkar A 2009 Physica B 404 1509
[27] Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403
[28] Yu W D, Li X M and Gao X D 2005 Cryst. Growth Des. 5 151
[29] Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943
[30] Liu X, Wu X H, Cao H and Chang R P H 2004 J. Appl. Phys. 95 3141
[31] Yung K C, Liem H and Choy H S 2009 J. Phys. D: Appl. Phys. 42 185002
[32] Gu Z B, Lu M H, Wang J, Du C L, Yuan C S, Wu D, Zhang S T, Zhu Y Y, Zhu S N and Chen Y F 2006 Thin Solid Films 515 2361
[33] Kim K C, Kim E K and Kim Y S 2007 Superlatt. Microstruct. 42 246
[34] Caglar M, Ilican S and Caglar Y 2009 Thin Solid Films 517 5023
[35] El Mir L, Ben Ayadi Z, Saadoun M, Djessas K, von Bardeleben H J and Alaya S 2007 Appl. Surf. Sci. 254 570
[36] Wood A, Giersig M, Hilgendorff M, Vilas-Campos A, Liz-Marzan L M and Mulvaney P 2003 Aust. J. Chem. 56 1051
[37] Bouvy C, Marine W, Sporken R and Su B L 2006 Chem. Phys. Lett. 428 312
[38] Wang Y S, Thomas P J and O'Brien P 2006 J. Phys. Chem. B 110 21412
[39] Cao Y Q, He T, Chen Y M and Cao Y A 2010 J. Phys. Chem. C 114 3627
[40] Bhargava R, Sharma P K, Dutta R K, Kumar S, Pandey A C and Kumar N 2010 Mater. Chem. Phys. 120 393
[41] Maiti U N, Ghosh P K, Nandy S and Chattopadhyay K K 2007 Physica B 387 103
[42] Shinde V R, Gujar T P, Lokhande C D, Mane R S and Han S H 2006 Mater. Chem. Phys. 96 326
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[10] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[13] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
No Suggested Reading articles found!