SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 |
Prev
Next
|
|
|
Rational doping for zinc oxide and its influences on morphology and optical properties |
Xia Yu-Jing (夏玉静)a b, Guan Zi-Sheng (管自生)b, He Tao (贺涛)a |
a National Center for Nanoscience and Technology, Beijing 100190, China;
b College of Materials Science and Technology, Nanjing University of Technology, Nanjing 210009, China |
|
|
Abstract Zinc oxide (ZnO) nanopowders doped with different metal ions (Me, Me = Sn4+, In3+, Mn2+, and Co2+) are prepared by a simple sol-gel method. Influences of the ion doping on morphology and optical properties of the resulting ZnxMeyO are investigated by scanning electron microscopy, X-ray diffraction, UV-vis absorption spectrum, and photoluminescence. The morphology of ZnO can be tailored by ion doping, which is closely related not only to the ionic radii and electronegativities of the doped ions, but also to their oxidation states and electron configurations. The optical band gap and photoluminescence of ZnO can also be modulated by ion doping, which results from a combination of different effects, Burstein-Moss, band tail, charge compensation, sp-d exchange, non-radiative recombination, and blocking barrier. This may offer us a viable approach to tuning the (optical) properties of ZnO-based materials via rational ion doping.
|
Received: 04 September 2013
Revised: 14 March 2014
Accepted manuscript online:
|
PACS:
|
77.55.hf
|
(ZnO)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.60.Lc
|
(Optically stimulated luminescence)
|
|
81.20.Fw
|
(Sol-gel processing, precipitation)
|
|
Corresponding Authors:
Guan Zi-Sheng, He Tao
E-mail: zishengguan@163.com;het@nanoctr.cn
|
Cite this article:
Xia Yu-Jing (夏玉静), Guan Zi-Sheng (管自生), He Tao (贺涛) Rational doping for zinc oxide and its influences on morphology and optical properties 2014 Chin. Phys. B 23 087701
|
[1] |
Özgur Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
[2] |
Wang Z L 2004 J. Phys.: Condens. Matter 16 R829
|
[3] |
Li L J, Yu K, Wang Y and Zhu Z Q 2010 Appl. Surf. Sci. 256 3361
|
[4] |
Holmelund E, Schou J, Tougaard S and Larsen N B 2002 Appl. Surf. Sci. 197-198 467
|
[5] |
Ben Yaacov T, Ive T, van de Walle C G, Mishra U K, Speck J S and Denbaars S P 2010 J. Electron. Mater. 39 608
|
[6] |
Kima Y S and Tai W P 2007 Appl. Surf. Sci. 253 4911
|
[7] |
Gaspera E D, Bersani M, Cittadini M, Guglielmi M, Pagani D, Noriega R, Mehra S, Salleo A and Martucci A 2013 J. Am. Chem. Soc. 135 3439
|
[8] |
Buonsanti R, Llordes A, Aloni S, Helms B A and Milliron D J 2011 Nano Lett. 11 4706
|
[9] |
Kuo S Y, Chen W C, Lai F I, Cheng C P, Kuo H C, Wang S C and Hsieh W F 2006 J. Cryst. Growth 287 78
|
[10] |
Ratana T, Amornpitoksuk P, Ratana T and Suwanboon S 2009 J. Alloys Compd. 470 408
|
[11] |
Ahmad M, Zhao J, Iqbal J, Miao W, Xie L, Mo R and Zhu J 2009 J. Phys. D: Appl. Phys. 42 165406
|
[12] |
Bhosle V, Prater J T, Yang F, Burk D, Forrest S R and Narayan J 2007 J. Appl. Phys. 102 023501
|
[13] |
Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H and Niki S 2003 Thin Solid Films 431-432 369
|
[14] |
Straumal B, Mazilkin A, Protasova S, Myatiev A, Straumal P, Goering E and Baretzky B 2011 Phys. Stat. Sol. B 248 1581
|
[15] |
Straumal B B, Mazilkin A A, Protasova S G, Myatiev A A, Straumal P B, Goering E and Baretzky B 2011 Thin Solid Films 520 1192
|
[16] |
Wu D W, Huang Z B, Yin G F, Yao Y D, Liao X M, Han D, Huang X and Gu J W 2010 Cryst. Eng. Comm. 12 192
|
[17] |
Park J H, Kim M G, Jang H M, Ryu S and Kim Y M 2004 Appl. Phys. Lett. 84 1338
|
[18] |
Janisch R, Gopal P and Spaldin N A 2005 J. Phys.: Condens. Matter 17 657
|
[19] |
Pan F, Song C, Liu X J, Yang Y C and Zeng F 2008 Mater. Sci. Eng. R 62 1
|
[20] |
Singh S and Rao M S R 2009 Phys. Rev. B 80 045210
|
[21] |
Djurisic A B and Leung Y H 2006 Small 2 944
|
[22] |
Djurisic A B, Ng A M C and Chen X Y 2010 Prog. Quantum Electron. 34 191
|
[23] |
Maensiri S, Sreesongmuang J, Thomas C and Klinkaewnarong J 2006 J. Magn. Magn. Mater. 301 422
|
[24] |
Cullity B D 1978 Elements of X-Ray Diffraction, 2nd edn. (London: Addison-Wesley Publishing Company Inc.)
|
[25] |
Yang J, Lee J, Im K and Lim S 2009 Physica E 42 51
|
[26] |
Chattopadhyay S, Dutta S, Banerjee A, Janaa D, Bandyopadhyay S, Chattopadhyay S and Sarkar A 2009 Physica B 404 1509
|
[27] |
Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403
|
[28] |
Yu W D, Li X M and Gao X D 2005 Cryst. Growth Des. 5 151
|
[29] |
Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943
|
[30] |
Liu X, Wu X H, Cao H and Chang R P H 2004 J. Appl. Phys. 95 3141
|
[31] |
Yung K C, Liem H and Choy H S 2009 J. Phys. D: Appl. Phys. 42 185002
|
[32] |
Gu Z B, Lu M H, Wang J, Du C L, Yuan C S, Wu D, Zhang S T, Zhu Y Y, Zhu S N and Chen Y F 2006 Thin Solid Films 515 2361
|
[33] |
Kim K C, Kim E K and Kim Y S 2007 Superlatt. Microstruct. 42 246
|
[34] |
Caglar M, Ilican S and Caglar Y 2009 Thin Solid Films 517 5023
|
[35] |
El Mir L, Ben Ayadi Z, Saadoun M, Djessas K, von Bardeleben H J and Alaya S 2007 Appl. Surf. Sci. 254 570
|
[36] |
Wood A, Giersig M, Hilgendorff M, Vilas-Campos A, Liz-Marzan L M and Mulvaney P 2003 Aust. J. Chem. 56 1051
|
[37] |
Bouvy C, Marine W, Sporken R and Su B L 2006 Chem. Phys. Lett. 428 312
|
[38] |
Wang Y S, Thomas P J and O'Brien P 2006 J. Phys. Chem. B 110 21412
|
[39] |
Cao Y Q, He T, Chen Y M and Cao Y A 2010 J. Phys. Chem. C 114 3627
|
[40] |
Bhargava R, Sharma P K, Dutta R K, Kumar S, Pandey A C and Kumar N 2010 Mater. Chem. Phys. 120 393
|
[41] |
Maiti U N, Ghosh P K, Nandy S and Chattopadhyay K K 2007 Physica B 387 103
|
[42] |
Shinde V R, Gujar T P, Lokhande C D, Mane R S and Han S H 2006 Mater. Chem. Phys. 96 326
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|