SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 |
Prev
Next
|
|
|
Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties |
Li Guo-Min (力国民)a b, Wang Lian-Cheng (王连成)a, Xu Yao (徐耀)a |
a Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Based on the nanocasting strategy, highly ordered mesoporous CoFe2O4 is synthesized via the‘two-solvent’impregnation method using a mesoporous SBA-15 template. An ordered two-dimensional (P6mm) structure is preserved for the CoFe2O4/SBA-15 composite after the nanocasting. After the SBA-15 template is dissolved by NaOH solution, a mesoporous structure composed of aligned nanoparticles can be obtained, and the P6mm structure of the parent SBA-15 is preserved. With a high specific surface area (above 90 m2/g) and ferromagnetic behavior, the obtained material shows potential in light weight microwave absorption application. The minimum reflection loss (RL) can reach -18 dB at about 16 GHz with a thickness of 2 mm and the corresponding absorption bandwidth is 4.5 GHz.
|
Received: 04 September 2013
Revised: 08 April 2014
Accepted manuscript online:
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Corresponding Authors:
Xu Yao
E-mail: xuyao@sxicc.ac.cn
|
Cite this article:
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀) Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties 2014 Chin. Phys. B 23 088105
|
[1] |
Okuno S N, Hashimoto S and Inomata K 1992 J. Appl. Phys. 71 5926
|
[2] |
Zhang Z L, Wang Y H, Tan Q Q, Zhong Z Y and Su F B 2013 J. Colloid Interf. Sci. 398 185
|
[3] |
Haetge J, Suchomski C and Brezesinski T 2010 Inorg. Chem. 49 11619
|
[4] |
Rennard R J and Kehl W L 1971 J. Catal. 21 282
|
[5] |
Xie J S, Wu Q S and Zhao D F 2012 Carbon 50 800
|
[6] |
Sasmita M, Rout S R, Maiti S, Maiti T K and Panda A B 2011 J. Mater. Chem. 21 9185
|
[7] |
Yang X C, Liu R J, Shen X Q, Song F Z, Jing M X and Meng X F 2013 Chin. Phys. B 22 058101
|
[8] |
Meshram M R, Agrawal N K, Sinha B and Misra P S 2004 J. Magn. Magn. Mater. 271 207
|
[9] |
Pullar R C, Taylor M D and Bhattacharya A K 2002 J. Eur. Ceram. Soc. 22 2039
|
[10] |
Ju Y W, Park J H, Jung H R, Cho S J and Lee W J 2008 Mater. Sci. Eng. A 147 7
|
[11] |
Guo P Z, Zhang G L, Yu J Q, Li H L and Zhao X S 2012 Colloid Surf. A: Physicochem. Eng. Asp. 395 168
|
[12] |
Rahimi R, Kerdari H, Rabbani M and Shafiee M 2011 Desalination 280 412
|
[13] |
Gu X, Zhu W M, Jia C J, Zhao R, Schmidt W and Wang Y Q 2011 Chem. Commun. 47 5337
|
[14] |
Quickel T E, Le V H, Brezesinski T and Tolbert S H 2010 Nano Lett. 10 2982
|
[15] |
Dahal N, Ibarra I A and Humphrey S M 2012 J. Mater. Chem. 22 12675
|
[16] |
Tüysüz H, Salabas E L, Bill E, Bongard H, Spliethoff B, Lehmann C W and Schüth F 2012 Chem. Mater. 24 2493
|
[17] |
Jiao F, Hill A H, Harrison A, Berko A, Chadwick A V and Bruce P G 2008 J. Am. Chem. Soc. 130 5262
|
[18] |
Dickinson C, Zhou W Z, Hodgkins R P, Shi Y F, Zhao D Y and He H Y 2006 Chem. Mater. 18 3088
|
[19] |
Liu S X, Yue B, Jiao K, Zhou Y and He H Y 2006 Mater. Lett. 60 154
|
[20] |
Gu M, Yue B, Bao R L and He H Y 2009 Mater. Res. Bull. 44 1422
|
[21] |
Sun Y Y, Ji G B, Zheng M B, Chang X F, Li S D and Zhang Y 2010 J. Mater. Chem. 20 945
|
[22] |
Van der Meer J, Bardez-Giboire J, Mercier C, Revel B, Davidson A and Denoyel R 2010 J. Phys. Chem. C 114 3507
|
[23] |
Zhao D Y, Huo Q S, Feng J L, Chmelka B F and Stucky G D 1998 J. Am. Chem. Soc. 120 6024
|
[24] |
Zhu K K, Yue B, Zhou W Z and He H Y 2003 Chem. Commun. 1 98
|
[25] |
Wang Y, Yang C M, Schmidt W, Spliethoff B, Bill E and Schüth F 2005 Adv. Mater. 17 53
|
[26] |
Tung L D, Kolesnichenko V, Caruntu D, Chou N H, O'Connor C J and Spin L 2003 J. Appl. Phys. 93 7486
|
[27] |
Haneda K and Morrish A H 1988 J. Appl. Phys. 63 4258
|
[28] |
Poudyal N, Rong C B and Liu J P 2011 J. Appl. Phys. 109 07B526
|
[29] |
Wei J Q, Zhang Z Q, Han R, Wang T and Li F S 2012 Chin. Phys. B 21 037601
|
[30] |
Wang G Z, Gao Z, Tang S W, Chen C Q, Duan F F, Zhao S C, Lin S W, Feng Y H, Zhou L and Qin Y 2012 ACS Nano 6 11012
|
[31] |
Atwater J E and Wheeler J R R 2004 Appl. Phys. A 79 125
|
[32] |
Li G M, Wang L C, Li W X, Ding R M and Xu Y 2014 Phys. Chem. Chem. Phys. 16 12390
|
[33] |
Wen F S, ZhangF and Liu Z Y 2011 J. Phys. Chem. C 115 14025
|
[34] |
Ma J, Li J G, Ni X, Zhang X D and Huang J J 2009 Appl. Phys. Lett. 95 102505
|
[35] |
Wu M Z, Zhang Y D, Hui S, Xiao T D, Ge S H, Hines W A, Budnick J I and Taylor G W 2002 Appl. Phys. Lett. 80 4404
|
[36] |
Wen F S, Yi H B, Qiao L, Zheng H, Zhou D and Li F S 2008 Appl. Phys. Lett. 92 042507
|
[37] |
Viau G, Fiévet-Vincent F, Fievet F, Toneguzzo P, Ravel F and Acher O 1997 J. Appl. Phys. 81 2749
|
[38] |
Toneguzzo P, Acher O, Viau G, Fiévet-Vincent F and Fievet F 1997 J. Appl. Phys. 81 5546
|
[39] |
Sun G B, Dong B X, Cao M H, Wei B Q and Hu C W 2011 Chem. Mater. 23 1587
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|