Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014401    DOI: 10.1088/1674-1056/24/1/014401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Near-field radiative heat transfer in mesoporous alumina

Li Jing (李静)a, Feng Yan-Hui (冯妍卉)a, Zhang Xin-Xin (张欣欣)a, Huang Cong-Liang (黄丛亮)a, Wang Ge (王戈)b
a School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
b School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2~ 4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored.
Keywords:  cylindrical pore      thermal conductivity      near-field radiation      mesoporous alumina  
Received:  01 August 2014      Revised:  09 September 2014      Accepted manuscript online: 
PACS:  44.40.+a (Thermal radiation)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51422601), the National Basic Research Program of China (Grant No. 2012CB720404), and the National Key Technology Research and Development Program of China (Grant No. 2013BAJ01B03).
Corresponding Authors:  Feng Yan-Hui     E-mail:  yhfeng@me.ustb.edu.cn

Cite this article: 

Li Jing (李静), Feng Yan-Hui (冯妍卉), Zhang Xin-Xin (张欣欣), Huang Cong-Liang (黄丛亮), Wang Ge (王戈) Near-field radiative heat transfer in mesoporous alumina 2015 Chin. Phys. B 24 014401

[1] Lv Y, Song Q L and Xia S H 2004 Prog. Phys. 24 424
[2] Polder D and Hove M V 1971 Phys. Rev. B 4 3303
[3] Chen R L 2005 43th AIAA Aerospace Sciences Meeting and Exhibit January 10-13, 2005 p. 960
[4] Mulet J P, Joulain K, Carminati R and Greffet J J 2002 Microscale Therm. Eng. 6 209
[5] Marquier F and Mengvc M P 2008 J. Quant. Spectrosc. Radiat. Transf. 109 280
[6] Mulet J P, Joulain K, Carminati R and Greffet J J 2001 Appl. Phys. Lett. 78 2931
[7] Narayanaswamy A, Shen S and Chen G 2008 Phys. Rev. B 78 115303
[8] Chapuis P O, Laroche M, Volz S and Greffet J J 2008 Appl. Phys. Lett. 92 201906
[9] Domingues G, Volz S, Joulain K and Greffet J J 2005 Phys. Rev. Lett. 94 085901
[10] Narayanaswamy A and Chen G 2008 Phys. Rev. B 77 075125
[11] Jiang L J, Jin H X and Xiong C X 2008 Nat. Sci. J. Hainan Univ. 26 126
[12] Chen L, He S L and Shen L F 2003 Chin. J. Phys. 52 2386
[13] Wang X Q and Mu L L 2003 J. Dalian Univ. 24 12
[14] Fu C J, and Zhang Z M 2006 Int. J. Heat Mass Tran. 49 1703
[15] Joulain K 2008 J. Quant. Spectrosc. Ra. 109 294
[16] Volokitin A I and Persson B N J 2001 Phys. Rev. B 63 205404
[17] Joulain K, Mulet J P, Marquier F, Carminati R and Greffet J J 2005 Surf. Sci. Rep. 57 59
[18] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R and Phillpot S R 2003 J. Appl. Phys. 93 793
[19] Tsamis C, Nassiopoulou A G and Tserepi A 2003 Sens. Actuators B: Chem. 95 78
[20] Huang C L, Feng Y H, Zhang X X and Wang G 2014 Mod. Phys. Lett. B 28 1450019
[21] Huang C L, Feng Y H, Zhang X X, Li J and Wang G 2013 Europhys. Lett. 103 56002
[22] Hu C, Morgen M, Ho P S, Jain A, Gill W N, Plawsky J L and Wayner P C 2000 Appl. Phys. Lett. 77 145
[23] James S and Hammonds J 2006 Appl. Phys. Lett. 88 041912
[24] Volokitin A I and Persson B N J 2007 Rev. Mod. Phys. 79 1291
[25] Pendry J B 1999 J. Phys.: Condens. Matter 11 6621
[26] Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (Academic Press) pp. 719-748
[27] Rytov S, Kravtsov Y and Tatarskii V 1989 Principles of Statistical Radiophysics (Vol. 3) (Berlin: Springer-Verlag)
[28] Touloukian Y S 1967 Thermophysical Properties of High Temperature Solid Materials (Vol. 3) pp. 8-47
[29] Tien C L, Majumdar A and Gerner F M 1998 Microscale Energy Transport (Washington, DC: Taylor and Francis)
[30] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[31] Huang C L, Feng Y H, Zhang X X, Li J and Wang G 2013 Chin. Phys. B 22 064401
[32] Zeng S Q, Hunt A J and Greif R 1995 ASME J. Heat Trans. 117 758
[33] Zeng S Q, Hunt A J and Greif R 1995 J. Non-Cryst. Solids 186 264
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[15] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
No Suggested Reading articles found!