Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 075209    DOI: 10.1088/1674-1056/23/7/075209
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure

Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲)
Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  The influence of driving frequency on the discharge regime of a homogenous dielectric barrier discharge in argon at atmospheric pressure is studied through a one-dimensional self-consistent fluid model. The simulation results show that the discharge exhibits five notable discharge modes, namely the Townsend mode, stable glow mode, chaotic mode, asymmetric glow, and multiple period glow mode in a broad frequency range. The transition mechanisms of these modes should be attributed to the competition between the applied voltage and the memory voltage induced by the surface charges.
Keywords:  Townsend mode      glow mode      mode transition      fluid model  
Received:  21 December 2013      Revised:  23 January 2014      Accepted manuscript online: 
PACS:  52.80.Hc (Glow; corona)  
  52.65.-y.52.20.-j  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11205044), the Hebei Natural Science Fund, China (Grant Nos. A2012201015 and A2011201006), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), and the Postdoctoral Science Foundation and Foundation of Hebei University, China (Grant No. 2010Q30).
Corresponding Authors:  Liu Fu-Cheng     E-mail:  hdlfc@hbu.cn
About author:  52.80.Hc; 52.65.-y.52.20.-j

Cite this article: 

Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲) Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure 2014 Chin. Phys. B 23 075209

[1] Liu F C, Yan W and Wang D Z 2013 Acta Phys. Sin. 62 175204 (in Chinese)
[2] Liu X H, He W, Yang F, Wang H Y, Liao R J and Xiao H G 2012 Chin. Phys. B 21 075201
[3] Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Collins G J and Lee J K 2012 Plasma Sources Sci. Technol. 21 043001
[4] Roth J R, Rahel J, Dai X and Sherman D M 2005 J. Phys. D: Appl. Phys. 38 555
[5] Dai D, Wang Q M and Hao Y P 2013 Acta Phys. Sin. 62 135204 (in Chinese)
[6] Massines F, Rabehi A, Decomps P, Gadri R B, Segur P and Mayoux C 1998 J. Appl. Phys. 83 2950
[7] Okazaki S, Kogoma M, Uehara M and Kimura Y 1993 J. Phys. D: Appl. Phys. 26 889
[8] Merbahi N, Sewraj N, Marchal F, Salamero Y and Millet P 2004 J. Phys. D: Appl. Phys. 37 1664
[9] Trunec D, Brablec A and Buchta J 2001 J. Phys. D: Appl. Phys. 34 1697
[10] Massines F, Gherardi N, Naude N and Segur P 2009 Eur. Phys. J. Appl. Phys. 47 22805
[11] Radu I, Bartnikas R and Wertheimer M R 2003 IEEE Trans. Plasma. Sci. 31 1363
[12] Lee D, Park J, Hong S and Kim Y 2005 IEEE Trans. Plasma. Sci. 33 949
[13] Wang Q, Sun J Z and Wang D Z 2011 Phys. Plasmas 18 103504
[14] Shin J and Raja L L 2007 J. Phys. D: Appl. Phys. 40 3145
[15] Ha Y, Wang H J and Wang X F 2012 Phys. Plasmas 19 012308
[16] Wang Y H, Zhang Y T, Wang D Z and Kong M. G 2007 Appl. Phys. Lett. 90 071501
[17] Zhang D Z, Wang Y H and Wang D Z 2013 Phys. Plasmas 20 063504
[18] Zhang Z H, Shao X J, Zhang G J, Li Y X and Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese)
[19] Shkurenkov I A, Mankelevich Y A and Rakhimova T V 2011 Eur. Phys. J. D 61 95
[20] Li Z, Zhao Z and Li X H 2013 Phys. Plasmas 20 013503
[21] Richards A D, Thompson B E and Sawin H H 1987 Appl. Phys. Lett. 50 492
[22] Hagelaar G J M and Pithford L C 2005 Plasma Sources Sci. Technol. 14 722
[23] Zhang Y R, Xu X and Wang Y N 2010 Phys. Plasmas 17 033507
[24] Balcon N, Hagelaar G J M and Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782
[25] Deconinck T and Raja L L 2009 Plasma Process. Polym. 6 335
[26] Kloc P, Wagner H E, Trunec D, Navratil Z and Fedpseev G 2010 J. Phys. D: Appl. Phys. 43 345205
[27] Golubovskii Y B, Maiorov V A, Behnke J and Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39
[28] Wang X Q, Dai D, Hao Y P and Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese)
[29] Shi J J, Deng X T, Hall R, Punnett J D and Kong M G 2003 J. Appl. Phys. 94 6303
[1] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[2] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[3] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[4] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[5] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[6] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[7] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[8] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[9] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[10] A 0.33-THz second-harmonic frequency-tunable gyrotron
Zheng-Di Li(李铮迪), Chao-Hai Du(杜朝海), Xiang-Bo Qi(戚向波), Li Luo(罗里), Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2016, 25(2): 029401.
[11] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[12] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
[13] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[14] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[15] A computational modeling study on the helium atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125202.
No Suggested Reading articles found!