Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064219    DOI: 10.1088/1674-1056/23/6/064219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reverse electric field Monte Carlo simulation for vector radiative transfer in the atmosphere

Li Xu-You (李绪友), Sun Bo (孙波), Yu Ying-Ying (于莹莹)
College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract  In this paper, a reverse electric field Monte Carlo (REMC) method is proposed to study the vector radiation transfer in the atmosphere. The REMC is based on tracing the multiply scattered electric field to simulate the vector transmitted radiance. The reflected intensities with different total optical depth values are obtained, which accord well with the results in the previous research. Stokes vector and the degree of polarization are numerically investigated. The simulation result shows that when the solar zenith angle is determined, the zenith angle of detector has two points, of which the degree of polarization does not change with the ground albedo and the optical depth. The two points change regularly with the solar zenith angle. Moreover, our REMC method can be applied to the vector radiative transfer in the atmosphere-ocean system.
Keywords:  radiative transfer      Monte Carlo      atmosphere scattering      polarization  
Received:  24 June 2013      Revised:  31 October 2013      Accepted manuscript online: 
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  05.10.Ln (Monte Carlo methods)  
  42.68.Mj (Scattering, polarization)  
  42.25.Ja (Polarization)  
Fund: Project supported by the Specific Scientific and Technological Cooperation Between China and Russia (Grant No. 2010DFR80140).
Corresponding Authors:  Sun Bo     E-mail:  kylesunbo@hotmail.com

Cite this article: 

Li Xu-You (李绪友), Sun Bo (孙波), Yu Ying-Ying (于莹莹) Reverse electric field Monte Carlo simulation for vector radiative transfer in the atmosphere 2014 Chin. Phys. B 23 064219

[1] Ramella-Roman J, Prahl S and Jacques S 2005 Opt. Express 13 4420
[2] Ramella-Roman J, Prahl S and Jacques S 2005 Opt. Express 13 10392
[3] Masrour R, Bahmad L and Benyoussef A 2013 Chin. Phys. B 22 057504
[4] Xu Y D, Liu Q Q and Deng Y J 2012 Chin. Phys. B 21 070211
[5] He B, Wang J G and Liu C L 2013 Chin. Phys. B 22 073101
[6] Plass G N, Kattawar G W and Catchings F E 1973 Appl. Opt. 12 314
[7] Kattawar G W 2013 Appl. Opt. 52 940
[8] Adams C N and Kattawar G W 1978 Icarus. 35 139
[9] Fischer J and Grassl H. 1984 Appl. Opt. 23 1032
[10] Modest M F 2001 Backward Monte Carlo Simulations in Radiative Heat Transfer (Pennsylvania: Penn State University)
[11] Xu M 2004 Opt. Express 12 6530
[12] Hayakawa C K, Potma E O and Venugopalan V 2011 Biomed. Opt. Express 2 278
[13] Yun T, Zeng N, Li W, Li D, Jiang X and Ma H 2009 Opt. Express 17 16590
[14] Chu J K, Zhao K C, Zhang Q and Wang T C 2007 International Conference on Mechatronics and Automation, August 5, 2007, Harbin, China, p. 3161
[15] Duan M Z and Guo X 2009 Acta. Phys. Sin. 58 1353 (in Chinese)
[16] Chowdhary J, Cairns B and Travis L D 2006 Appl. Opt. 45 5542
[17] Sun B, Wang H, Sun X B, S, Hong J and Zhang Y J 2012 Chin. Phys. B 21 129501
[18] Sawicki J, Kastor N and Xu M 2008 Opt. Express 16 5728
[19] Basri R and Jacobs D W 2003 Pattern Analysis and Machine Intelligence 25 218
[20] Zhai P W, Kattawar G W and Yang P 2008 Appl. Opt. 47 1037
[21] Roberti L 1997 Appl. Opt. 36 7929
[22] Kattawar G W and Adams C N 1970 J. Quant. Spectrosc. Radiar. Transfer 10 341
[23] Wang L H and Steven L J 1992 Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C (Vol. 1) (Houston: M. D. Anderson Cancer Center Press) pp. 1-173
[24] Elterman L 1968 Air Force Cambridge Research Labs Hanscom AFB MA 68 0153
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[11] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[12] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[13] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
No Suggested Reading articles found!